Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
J Neuroendocrinol. 2020 Nov;32(11):e12883. doi: 10.1111/jne.12883. Epub 2020 Jul 13.
In normal individuals, pituitary somatotrophs optimise body composition by responding to metabolic signals from leptin. To identify mechanisms behind the regulation of somatotrophs by leptin, we used Cre-LoxP technology to delete leptin receptors (LEPR) selectively in somatotrophs and developed populations purified by fluorescence-activated cell sorting (FACS) that contained 99% somatotrophs. FACS-purified, Lepr-null somatotrophs showed reduced levels of growth hormone (GH), growth hormone-releasing hormone receptor (GHRHR), and Pou1f1 proteins and Gh (females) and Ghrhr (both sexes) mRNAs. Pure somatotrophs also expressed thyroid-stimulating hormone (TSH) and prolactin (PRL), both of which were reduced in pure somatotrophs lacking LEPR. This introduced five gene products that were targets of leptin. In the present study, we tested the hypothesis that leptin is both a transcriptional and a post-transcriptional regulator of these gene products. Our tests showed that Pou1f1 and/or the Janus kinase/signal transducer and activator of transcription 3 transcriptional regulatory pathways are implicated in the leptin regulation of Gh or Ghrhr mRNAs. We then focused on potential actions by candidate microRNAs (miRNAs) with consensus binding sites on the 3' UTR of Gh or Ghrhr mRNAs. Somatotroph Lepr-null deletion mutants expressed elevated levels of miRNAs including miR1197-3p (in females), miR103-3p and miR590-3p (both sexes), which bind Gh mRNA, or miRNA-325-3p (elevated in both sexes), which binds Ghrhr mRNA. This elevation indicates repression of translation in the absence of LEPR. In addition, after detecting binding sites for Musashi on Tshb and Prl 3' UTR, we determined that Musashi1 repressed translation of both mRNAs in in vitro fluc assays and that Prl mRNA was enriched in Musashi immunoprecipitation assays. Finally, we tested ghrelin actions to determine whether its nitric oxide-mediated signalling pathways would restore somatotroph functions in deletion mutants. Ghrelin did not restore either GHRH binding or GH secretion in vitro. These studies show an unexpectedly broad role for leptin with respect to maintaining somatotroph functions, including the regulation of PRL and TSH in subsets of somatotrophs that may be progenitor cells.
在正常个体中,垂体生长激素细胞通过对来自瘦素的代谢信号做出反应来优化身体成分。为了确定瘦素调节生长激素细胞的机制,我们使用 Cre-LoxP 技术选择性地在生长激素细胞中删除瘦素受体(LEPR),并开发了通过荧光激活细胞分选(FACS)纯化的群体,其中包含 99%的生长激素细胞。FACS 纯化的 Lepr 缺失生长激素细胞显示生长激素(GH)、生长激素释放激素受体(GHRHR)和 Pou1f1 蛋白以及 Gh(女性)和 Ghrhr(两性)mRNA 的水平降低。纯生长激素细胞还表达促甲状腺激素(TSH)和催乳素(PRL),这两种激素在缺乏 LEPR 的纯生长激素细胞中均减少。这引入了五个瘦素的靶基因产物。在本研究中,我们检验了这样一个假设,即瘦素既是这些基因产物的转录和转录后调节因子。我们的测试表明,Pou1f1 和/或 Janus 激酶/信号转导和转录激活因子 3 转录调节途径参与了瘦素对 Gh 或 Ghrhr mRNA 的调节。然后,我们将重点放在候选 microRNAs(miRNAs)上,这些 miRNA 与 Gh 或 Ghrhr mRNA 的 3'UTR 上具有共识结合位点。生长激素细胞 Lepr 缺失突变体表达高水平的 miRNA,包括 miR1197-3p(女性)、miR103-3p 和 miR590-3p(两性),它们结合 Gh mRNA,或 miRNA-325-3p(两性均升高),结合 Ghrhr mRNA。这种升高表明在缺乏 LEPR 的情况下翻译受到抑制。此外,在检测到 Musashi 在 Tshb 和 Prl 3'UTR 上的结合位点后,我们确定 Musashi1 抑制了体外 fluc 测定中这两种 mRNA 的翻译,并且 Prl mRNA 在 Musashi 免疫沉淀测定中富集。最后,我们测试了 ghrelin 的作用,以确定其一氧化氮介导的信号通路是否会恢复缺失突变体中的生长激素细胞功能。ghrelin 并没有恢复体外 GHRH 结合或 GH 分泌。这些研究表明,瘦素在维持生长激素细胞功能方面具有出乎意料的广泛作用,包括调节生长激素细胞中的 PRL 和 TSH,这可能是祖细胞的一部分。