Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America.
Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America.
PLoS One. 2020 Jul 13;15(7):e0235799. doi: 10.1371/journal.pone.0235799. eCollection 2020.
ATP-dependent chromatin-remodeling complexes epigenetically modulate transcription of target genes to impact a variety of developmental processes. Our lab previously demonstrated that CHD4-a central ATPase and catalytic enzyme of the NuRD chromatin-remodeling complex-plays an important role in murine embryonic endothelial cells by transcriptionally regulating vascular integrity at midgestation. Since NuRD complexes can incorporate the ATPase CHD3 as an alternative to CHD4, we questioned whether the CHD3 enzyme likewise modulates vascular development or integrity. We generated a floxed allele of Chd3 but saw no evidence of lethality or vascular anomalies when we deleted it in embryonic endothelial cells in vivo (Chd3ECKO). Furthermore, double-deletion of Chd3 and Chd4 in embryonic endothelial cells (Chd3/4ECKO) did not dramatically alter the timing and severity of embryonic phenotypes seen in Chd4ECKO mutants, indicating that CHD3 does not play a cooperative role with CHD4 in early vascular development. However, excision of Chd3 at the epiblast stage of development with a Sox2-Cre line allowed us to generate global heterozygous Chd3 mice (Chd3Δ/+), which were subsequently intercrossed and revealed partial lethality of Chd3Δ/Δ mutants prior to weaning. Tissues from surviving Chd3Δ/Δ mutants helped us confirm that CHD3 was efficiently deleted in these animals and that CHD3 is highly expressed in the gonads and brains of adult wildtype mice. Therefore, Chd3-flox mice will be beneficial for future studies about roles for this chromatin-remodeling enzyme in viable embryonic development and in gonadal and brain physiology.
ATP 依赖性染色质重塑复合物通过表观遗传调控靶基因的转录来影响多种发育过程。我们实验室之前的研究表明,CHD4 是 NuRD 染色质重塑复合物的中心 ATP 酶和催化酶,在鼠胚内皮细胞中通过转录调节中期血管完整性发挥重要作用。由于 NuRD 复合物可以将 ATP 酶 CHD3 作为 CHD4 的替代物纳入其中,我们质疑 CHD3 酶是否同样调节血管发育或完整性。我们生成了 Chd3 的 floxed 等位基因,但当我们在体内删除胚胎内皮细胞中的 Chd3 时,没有发现致死性或血管异常的证据(Chd3ECKO)。此外,胚胎内皮细胞中 Chd3 和 Chd4 的双重缺失(Chd3/4ECKO)并没有显著改变 Chd4ECKO 突变体中观察到的胚胎表型的时间和严重程度,表明 CHD3 与 CHD4 在早期血管发育中没有协同作用。然而,利用 Sox2-Cre 线在胚胎外胚层发育阶段切除 Chd3,使我们能够生成全局杂合 Chd3 小鼠(Chd3Δ/+),随后进行杂交,并在断奶前揭示了 Chd3Δ/Δ 突变体的部分致死性。存活的 Chd3Δ/Δ 突变体的组织帮助我们证实了这些动物中 CHD3 被有效地删除,并且 CHD3 在成年野生型小鼠的性腺和大脑中高度表达。因此,Chd3-flox 小鼠将有助于研究这种染色质重塑酶在胚胎发育和性腺和大脑生理学中的作用。