Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
ACS Appl Mater Interfaces. 2020 Aug 19;12(33):36851-36859. doi: 10.1021/acsami.0c08064. Epub 2020 Jul 27.
Electrochemical biosensing relies on electron transport on the electrode surface. However, the limited functional area of the two-dimensional electrode prevents the qualitative breakthrough in the efficiency of electron transfer. Here, a three-dimensional electron transporter was constructed to improve the efficiency of electron transfer by using an interface-immobilized DNA hydrogel. A three-dimensional pure DNA hydrogel is constructed and used as a scaffold for electron transfer. Then, an electron mediator is embedded in the DNA hydrogel through intercalative binding, and DNAzyme with intrinsic peroxidase-like activity is introduced at the node of the hydrogel scaffold to fabricate an electrochemical biosensor. The conduction of the electron mediator in the scaffold enables the acquisition of long-distance DNAzyme catalytic signals, thereby overcoming the limitation of two-dimensional electrodes. This three-dimensional electron transporter is significant for enriching the toolbox of electrochemical biosensing and can provide potential support for the development of highly sensitive biosensors.
电化学生物传感依赖于电极表面的电子传递。然而,二维电极的有限功能区限制了电子转移效率的定性突破。在这里,通过界面固定化 DNA 水凝胶构建了三维电子传输体,以提高电子转移效率。构建了三维纯 DNA 水凝胶,并将其用作电子转移的支架。然后,通过嵌入结合将电子介体嵌入 DNA 水凝胶中,并在水凝胶支架的节点处引入具有固有过氧化物酶样活性的 DNA 酶来制备电化学生物传感器。电子介体在支架中的传导使获得远距离 DNA 酶催化信号成为可能,从而克服了二维电极的限制。这种三维电子传输体对于丰富电化学生物传感工具箱具有重要意义,并可为高灵敏度生物传感器的发展提供潜在支持。