Suppr超能文献

TRACE:使用染色质可及性数据和 DNA 序列进行转录因子足迹分析。

TRACE: transcription factor footprinting using chromatin accessibility data and DNA sequence.

机构信息

Department of Computational Medicine and Bioinformatics.

Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Genome Res. 2020 Jul;30(7):1040-1046. doi: 10.1101/gr.258228.119. Epub 2020 Jul 6.

Abstract

Transcription is tightly regulated by -regulatory DNA elements where transcription factors (TFs) can bind. Thus, identification of TF binding sites (TFBSs) is key to understanding gene expression and whole regulatory networks within a cell. The standard approaches used for TFBS prediction, such as position weight matrices (PWMs) and chromatin immunoprecipitation followed by sequencing (ChIP-seq), are widely used but have their drawbacks, including high false-positive rates and limited antibody availability, respectively. Several computational footprinting algorithms have been developed to detect TFBSs by investigating chromatin accessibility patterns; however, these also have limitations. We have developed a footprinting method to predict TF footprints in active chromatin elements (TRACE) to improve the prediction of TFBS footprints. TRACE incorporates DNase-seq data and PWMs within a multivariate hidden Markov model (HMM) to detect footprint-like regions with matching motifs. TRACE is an unsupervised method that accurately annotates binding sites for specific TFs automatically with no requirement for pregenerated candidate binding sites or ChIP-seq training data. Compared with published footprinting algorithms, TRACE has the best overall performance with the distinct advantage of targeting multiple motifs in a single model.

摘要

转录受到 - 调控 DNA 元件的严格调控,转录因子 (TFs) 可以结合在这些元件上。因此,鉴定 TF 结合位点 (TFBSs) 是理解细胞内基因表达和整个调控网络的关键。用于 TFBS 预测的标准方法,如位置权重矩阵 (PWMs) 和染色质免疫沉淀 followed by sequencing (ChIP-seq),虽然被广泛应用,但也存在各自的缺陷,分别是高假阳性率和有限的抗体可用性。已经开发了几种计算足迹算法来通过研究染色质可及性模式来检测 TFBSs;然而,这些也有局限性。我们开发了一种足迹预测方法,用于预测活性染色质元件中的 TF 足迹 (TRACE),以提高 TFBS 足迹的预测准确性。TRACE 将 DNase-seq 数据和 PWM 纳入多元隐马尔可夫模型 (HMM) 中,以检测具有匹配基序的类似足迹的区域。TRACE 是一种无监督的方法,能够自动准确地注释特定 TF 的结合位点,而不需要预先生成的候选结合位点或 ChIP-seq 训练数据。与已发表的足迹算法相比,TRACE 具有最佳的整体性能,其独特的优势在于在单个模型中针对多个基序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdfb/7397869/e133a3dca7fd/1040f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验