Suppr超能文献

训练神经网络进行扩散 MRI 中的 Gibbs 噪声和噪声去除。

Training a neural network for Gibbs and noise removal in diffusion MRI.

机构信息

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA.

NYU Tandon School of Engineering, Brooklyn, NY, USA.

出版信息

Magn Reson Med. 2021 Jan;85(1):413-428. doi: 10.1002/mrm.28395. Epub 2020 Jul 14.

Abstract

PURPOSE

To develop and evaluate a neural network-based method for Gibbs artifact and noise removal.

METHODS

A convolutional neural network (CNN) was designed for artifact removal in diffusion-weighted imaging data. Two implementations were considered: one for magnitude images and one for complex images. Both models were based on the same encoder-decoder structure and were trained by simulating MRI acquisitions on synthetic non-MRI images.

RESULTS

Both machine learning methods were able to mitigate artifacts in diffusion-weighted images and diffusion parameter maps. The CNN for complex images was also able to reduce artifacts in partial Fourier acquisitions.

CONCLUSIONS

The proposed CNNs extend the ability of artifact correction in diffusion MRI. The machine learning method described here can be applied on each imaging slice independently, allowing it to be used flexibly in clinical applications.

摘要

目的

开发并评估一种基于神经网络的方法,用于去除 Gibbs 伪影和噪声。

方法

设计了一种卷积神经网络(CNN),用于去除扩散加权成像数据中的伪影。考虑了两种实现方式:一种用于幅度图像,另一种用于复数图像。这两个模型都基于相同的编解码器结构,并通过在合成非 MRI 图像上模拟 MRI 采集来进行训练。

结果

两种机器学习方法都能够减轻扩散加权图像和扩散参数图中的伪影。复数图像的 CNN 还能够减少部分傅里叶采集的伪影。

结论

所提出的 CNN 扩展了扩散 MRI 中伪影校正的能力。这里描述的机器学习方法可以独立地应用于每个成像切片,使其在临床应用中具有灵活性。

相似文献

1
Training a neural network for Gibbs and noise removal in diffusion MRI.
Magn Reson Med. 2021 Jan;85(1):413-428. doi: 10.1002/mrm.28395. Epub 2020 Jul 14.
2
MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
Magn Reson Med. 2019 Dec;82(6):2133-2145. doi: 10.1002/mrm.27894. Epub 2019 Aug 2.
3
High-field mr diffusion-weighted image denoising using a joint denoising convolutional neural network.
J Magn Reson Imaging. 2019 Dec;50(6):1937-1947. doi: 10.1002/jmri.26761. Epub 2019 Apr 22.
5
Removal of partial Fourier-induced Gibbs (RPG) ringing artifacts in MRI.
Magn Reson Med. 2021 Nov;86(5):2733-2750. doi: 10.1002/mrm.28830. Epub 2021 Jul 5.
6
Rapid 2D Na MRI of the calf using a denoising convolutional neural network.
Magn Reson Imaging. 2024 Jul;110:184-194. doi: 10.1016/j.mri.2024.04.027. Epub 2024 Apr 19.
8
Denoising diffusion weighted imaging data using convolutional neural networks.
PLoS One. 2022 Sep 15;17(9):e0274396. doi: 10.1371/journal.pone.0274396. eCollection 2022.
9
Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
Magn Reson Med. 2020 Jan;83(1):124-138. doi: 10.1002/mrm.27917. Epub 2019 Aug 12.
10
Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
Comput Med Imaging Graph. 2021 Jun;90:101897. doi: 10.1016/j.compmedimag.2021.101897. Epub 2021 Mar 11.

引用本文的文献

1
Generative AI for rapid diffusion MRI with improved image quality, reliability, and generalizability.
Imaging Neurosci (Camb). 2024 Jun 13;2. doi: 10.1162/imag_a_00193. eCollection 2024.
2
Efficient PCA denoising of spatially correlated redundant MRI data.
Imaging Neurosci (Camb). 2023 Dec 18;1. doi: 10.1162/imag_a_00049. eCollection 2023.
4
Diffusion MRI with Machine Learning.
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00353. Epub 2024 Nov 12.
6
Development and evaluation of a deep learning model for multi-frequency Gibbs artifact elimination.
Quant Imaging Med Surg. 2025 Feb 1;15(2):1160-1174. doi: 10.21037/qims-24-1344. Epub 2025 Jan 22.
7
Let UNet Play an Adversarial Game: Investigating the Effect of Adversarial Training in Enhancing Low-Resolution MRI.
J Imaging Inform Med. 2025 Feb;38(1):629-645. doi: 10.1007/s10278-024-01205-8. Epub 2024 Jul 31.
9
Deep learning enabled fast 3D brain MRI at 0.055 tesla.
Sci Adv. 2023 Sep 22;9(38):eadi9327. doi: 10.1126/sciadv.adi9327.
10
Comparison of different neurite density metrics with brain asymmetry evaluation.
Z Med Phys. 2025 May;35(2):177-192. doi: 10.1016/j.zemedi.2023.07.003. Epub 2023 Aug 8.

本文引用的文献

1
MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
Magn Reson Med. 2019 Dec;82(6):2133-2145. doi: 10.1002/mrm.27894. Epub 2019 Aug 2.
2
Simulation-based deep artifact correction with Convolutional Neural Networks for limited angle artifacts.
Z Med Phys. 2019 May;29(2):150-161. doi: 10.1016/j.zemedi.2019.01.002. Epub 2019 Feb 14.
3
Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks.
Sci Rep. 2018 Nov 7;8(1):16485. doi: 10.1038/s41598-018-34817-6.
4
Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline.
Neuroimage. 2018 Dec;183:532-543. doi: 10.1016/j.neuroimage.2018.07.066. Epub 2018 Aug 2.
5
Assessment of the generalization of learned image reconstruction and the potential for transfer learning.
Magn Reson Med. 2019 Jan;81(1):116-128. doi: 10.1002/mrm.27355. Epub 2018 May 17.
6
Super-resolution musculoskeletal MRI using deep learning.
Magn Reson Med. 2018 Nov;80(5):2139-2154. doi: 10.1002/mrm.27178. Epub 2018 Mar 26.
7
Image reconstruction by domain-transform manifold learning.
Nature. 2018 Mar 21;555(7697):487-492. doi: 10.1038/nature25988.
8
Learning a variational network for reconstruction of accelerated MRI data.
Magn Reson Med. 2018 Jun;79(6):3055-3071. doi: 10.1002/mrm.26977. Epub 2017 Nov 8.
9
A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction.
IEEE Trans Med Imaging. 2018 Feb;37(2):491-503. doi: 10.1109/TMI.2017.2760978. Epub 2017 Oct 13.
10
Denoising of diffusion MRI using random matrix theory.
Neuroimage. 2016 Nov 15;142:394-406. doi: 10.1016/j.neuroimage.2016.08.016. Epub 2016 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验