Suppr超能文献

让U-Net进行对抗博弈:探究对抗训练对增强低分辨率磁共振成像的效果

Let UNet Play an Adversarial Game: Investigating the Effect of Adversarial Training in Enhancing Low-Resolution MRI.

作者信息

Javadi Mohammad, Sharma Rishabh, Tsiamyrtzis Panagiotis, Webb Andrew G, Leiss Ernst, Tsekos Nikolaos V

机构信息

Medical Robotics and Imaging Lab, Department of Computer Science, University of Houston, 501, Philip G. Hoffman Hall, 4800 Calhoun Road, Houston, TX, 77204, USA.

Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy.

出版信息

J Imaging Inform Med. 2025 Feb;38(1):629-645. doi: 10.1007/s10278-024-01205-8. Epub 2024 Jul 31.

Abstract

Adversarial training has attracted much attention in enhancing the visual realism of images, but its efficacy in clinical imaging has not yet been explored. This work investigated adversarial training in a clinical context, by training 206 networks on the OASIS-1 dataset for improving low-resolution and low signal-to-noise ratio (SNR) magnetic resonance images. Each network corresponded to a different combination of perceptual and adversarial loss weights and distinct learning rate values. For each perceptual loss weighting, we identified its corresponding adversarial loss weighting that minimized structural disparity. Each optimally weighted adversarial loss yielded an average SSIM reduction of 1.5%. We further introduced a set of new metrics to assess other clinically relevant image features: Gradient Error (GE) to measure structural disparities; Sharpness to compute edge clarity; and Edge-Contrast Error (ECE) to quantify any distortion of the pixel distribution around edges. Including adversarial loss increased structural enhancement in visual inspection, which correlated with statistically consistent GE reductions (p-value << 0.05). This also resulted in increased Sharpness; however, the level of statistical significance was dependent on the perceptual loss weighting. Additionally, adversarial loss yielded ECE reductions for smaller perceptual loss weightings, while showing non-significant increases (p-value >> 0.05) when these weightings were higher, demonstrating that the increased Sharpness does not adversely distort the pixel distribution around the edges in the image. These studies clearly suggest that adversarial training significantly improves the performance of an MRI enhancement pipeline, and highlights the need for systematic studies of hyperparameter optimization and investigation of alternative image quality metrics.

摘要

对抗训练在增强图像视觉真实感方面备受关注,但其在临床成像中的效果尚未得到探索。这项工作在临床环境中研究了对抗训练,通过在OASIS - 1数据集上训练206个网络来改善低分辨率和低信噪比(SNR)的磁共振图像。每个网络对应于感知损失权重和对抗损失权重以及不同学习率值的不同组合。对于每个感知损失权重,我们确定了其相应的对抗损失权重,该权重可使结构差异最小化。每个最优加权的对抗损失使平均结构相似性指数(SSIM)降低了1.5%。我们还引入了一组新的指标来评估其他临床相关的图像特征:用于测量结构差异的梯度误差(GE);用于计算边缘清晰度的锐度;以及用于量化边缘周围像素分布任何失真的边缘对比度误差(ECE)。纳入对抗损失增加了视觉检查中的结构增强,这与统计学上一致的GE降低相关(p值 << 0.05)。这也导致了锐度的增加;然而,统计显著性水平取决于感知损失权重。此外,对于较小的感知损失权重,对抗损失使ECE降低,而当这些权重较高时,显示出不显著的增加(p值 >> 0.05),这表明增加的锐度不会对图像边缘周围的像素分布产生不利扭曲。这些研究清楚地表明,对抗训练显著提高了MRI增强流程的性能,并强调了对超参数优化进行系统研究以及对替代图像质量指标进行研究的必要性。

相似文献

1
Let UNet Play an Adversarial Game: Investigating the Effect of Adversarial Training in Enhancing Low-Resolution MRI.
J Imaging Inform Med. 2025 Feb;38(1):629-645. doi: 10.1007/s10278-024-01205-8. Epub 2024 Jul 31.
3
Generative Adversarial Network Based Contrast Enhancement: Synthetic Contrast Brain Magnetic Resonance Imaging.
Acad Radiol. 2025 Apr;32(4):2220-2232. doi: 10.1016/j.acra.2024.11.021. Epub 2024 Dec 18.
4
Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
Med Phys. 2022 Apr;49(4):2373-2385. doi: 10.1002/mp.15468. Epub 2022 Mar 7.
6
Super-resolution of cardiac magnetic resonance images using Laplacian Pyramid based on Generative Adversarial Networks.
Comput Med Imaging Graph. 2020 Mar;80:101698. doi: 10.1016/j.compmedimag.2020.101698. Epub 2020 Jan 3.
7
[Super-resolution construction of intravascular ultrasound images using generative adversarial networks].
Nan Fang Yi Ke Da Xue Xue Bao. 2019 Jan 30;39(1):82-87. doi: 10.12122/j.issn.1673-4254.2019.01.13.
10
A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
Magn Reson Imaging. 2022 Jan;85:153-160. doi: 10.1016/j.mri.2021.10.033. Epub 2021 Oct 24.

本文引用的文献

1
RIRGAN: An end-to-end lightweight multi-task learning method for brain MRI super-resolution and denoising.
Comput Biol Med. 2023 Oct 27;167:107632. doi: 10.1016/j.compbiomed.2023.107632.
2
Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution.
IEEE Trans Neural Netw Learn Syst. 2024 Feb 21;PP. doi: 10.1109/TNNLS.2023.3253557.
3
Metabolic brain imaging with glucosamine CEST MRI: in vivo characterization and first insights.
Sci Rep. 2023 Dec 12;13(1):22030. doi: 10.1038/s41598-023-48515-5.
5
Learning to deep learning: statistics and a paradigm test in selecting a UNet architecture to enhance MRI.
MAGMA. 2024 Jul;37(3):507-528. doi: 10.1007/s10334-023-01127-6. Epub 2023 Nov 21.
6
Super-resolution of magnetic resonance images using Generative Adversarial Networks.
Comput Med Imaging Graph. 2023 Sep;108:102280. doi: 10.1016/j.compmedimag.2023.102280. Epub 2023 Jul 31.
7
Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging.
Nat Commun. 2023 May 18;14(1):2854. doi: 10.1038/s41467-023-38452-2.
8
Medical image super-resolution reconstruction algorithms based on deep learning: A survey.
Comput Methods Programs Biomed. 2023 Aug;238:107590. doi: 10.1016/j.cmpb.2023.107590. Epub 2023 May 6.
9
ESRGAN-DP: Enhanced super-resolution generative adversarial network with adaptive dual perceptual loss.
Heliyon. 2023 Apr 3;9(4):e15134. doi: 10.1016/j.heliyon.2023.e15134. eCollection 2023 Apr.
10
Reliability of spinal cord measures based on synthetic T-weighted MRI derived from multiparametric mapping (MPM).
Neuroimage. 2023 May 1;271:120046. doi: 10.1016/j.neuroimage.2023.120046. Epub 2023 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验