Suppr超能文献

使用去噪卷积神经网络进行小腿快速 2D Na MRI。

Rapid 2D Na MRI of the calf using a denoising convolutional neural network.

机构信息

UCL Centre for Medical Imaging, University College London, London, UK; UCL Centre for Translational Cardiovascular Imaging, University College London, London, UK.

UCL Centre for Translational Cardiovascular Imaging, University College London, London, UK.

出版信息

Magn Reson Imaging. 2024 Jul;110:184-194. doi: 10.1016/j.mri.2024.04.027. Epub 2024 Apr 19.

Abstract

PURPOSE

Na MRI can be used to quantify in-vivo tissue sodium concentration (TSC), but the inherently low Na signal leads to long scan times and/or noisy or low-resolution images. Reconstruction algorithms such as compressed sensing (CS) have been proposed to mitigate low signal-to-noise ratio (SNR); although, these can result in unnatural images, suboptimal denoising and long processing times. Recently, machine learning has been increasingly used to denoise H MRI acquisitions; however, this approach typically requires large volumes of high-quality training data, which is not readily available for Na MRI. Here, we propose using H data to train a denoising convolutional neural network (CNN), which we subsequently demonstrate on prospective Na images of the calf.

METHODS

1893 H fat-saturated transverse slices of the knee from the open-source fastMRI dataset were used to train denoising CNNs for different levels of noise. Synthetic low SNR images were generated by adding gaussian noise to the high-quality H k-space data before reconstruction to create paired training data. For prospective testing, Na images of the calf were acquired in 10 healthy volunteers with a total of 150 averages over ten minutes, which were used as a reference throughout the study. From this data, images with fewer averages were retrospectively reconstructed using a non-uniform fast Fourier transform (NUFFT) as well as CS, with the NUFFT images subsequently denoised using the trained CNN.

RESULTS

CNNs were successfully applied to Na images reconstructed with 50, 40 and 30 averages. Muscle and skin apparent TSC quantification from CNN-denoised images were equivalent to those from CS images, with <0.9 mM bias compared to reference values. Estimated SNR was significantly higher in CNN-denoised images compared to NUFFT, CS and reference images. Quantitative edge sharpness was equivalent for all images. For subjective image quality ranking, CNN-denoised images ranked equally best with reference images and significantly better than NUFFT and CS images.

CONCLUSION

Denoising CNNs trained on H data can be successfully applied to Na images of the calf; thus, allowing scan time to be reduced from ten minutes to two minutes with little impact on image quality or apparent TSC quantification accuracy.

摘要

目的

Na MRI 可用于定量体内组织钠浓度(TSC),但固有低 Na 信号导致扫描时间长和/或图像噪声大或分辨率低。压缩感知(CS)等重建算法已被提出用于减轻低信噪比(SNR);然而,这可能导致图像不自然、去噪效果不佳和处理时间长。最近,机器学习越来越多地用于去噪 H MRI 采集;然而,这种方法通常需要大量高质量的训练数据,而 Na MRI 并不容易获得。在这里,我们提出使用 H 数据来训练去噪卷积神经网络(CNN),然后我们将其应用于前瞻性小腿 Na 图像。

方法

使用来自开源 fastMRI 数据集的膝关节 1893 个 H 脂肪饱和横断面切片来训练不同噪声水平的去噪 CNN。通过在重建前将高斯噪声添加到高质量 H 空间数据中,生成具有低 SNR 的合成图像,以创建配对的训练数据。前瞻性测试中,在 10 名健康志愿者中采集了小腿的 Na 图像,总共采集了 10 分钟的 150 个平均值,整个研究过程中均以此作为参考。从这些数据中,使用非均匀快速傅里叶变换(NUFFT)以及 CS 对较少平均值的图像进行回顾性重建,然后使用训练好的 CNN 对 NUFFT 图像进行去噪。

结果

成功地将 CNN 应用于使用 50、40 和 30 个平均值重建的 Na 图像。从 CNN 去噪图像中定量测量肌肉和皮肤的表观 TSC 与 CS 图像相当,与参考值相比偏差<0.9 mM。与 NUFFT、CS 和参考图像相比,CNN 去噪图像的估计 SNR 显著更高。所有图像的定量边缘锐度相当。对于主观图像质量排名,CNN 去噪图像与参考图像排名相同,明显优于 NUFFT 和 CS 图像。

结论

基于 H 数据训练的去噪 CNN 可成功应用于小腿的 Na 图像;因此,可以将扫描时间从十分钟缩短到两分钟,而对图像质量或表观 TSC 定量准确性几乎没有影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验