Suppr超能文献

不同神经突密度指标与脑不对称性评估的比较。

Comparison of different neurite density metrics with brain asymmetry evaluation.

作者信息

Maximov Ivan I, Westlye Lars T

机构信息

Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.

Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jensen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.

出版信息

Z Med Phys. 2025 May;35(2):177-192. doi: 10.1016/j.zemedi.2023.07.003. Epub 2023 Aug 8.

Abstract

The standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural parameters describing brain white matter architecture. However, non-linearities in the standard model and diffusion data contamination by noise and imaging artefacts make estimation of diffusion metrics challenging. In order to develop reliable diffusion approaches and to avoid computational model degeneracy, additional theoretical assumptions allowing stable numerical implementations are required. Advanced diffusion approaches allow for estimation of intra-axonal water fraction (AWF), describing a key structural characteristic of brain tissue. AWF can be interpreted as an indirect measure or proxy of neurite density and has a potential as useful clinical biomarker. Established diffusion approaches such as white matter tract integrity, neurite orientation dispersion and density imaging (NODDI), and spherical mean technique provide estimates of AWF within their respective theoretical frameworks. In the present study, we estimated AWF metrics using different diffusion approaches and compared measures of brain asymmetry between the different metrics in a sub-sample of 182 subjects from the UK Biobank. Multivariate decomposition by mean of linked independent component analysis revealed that the various AWF proxies derived from the different diffusion approaches reflect partly non-overlapping variance of independent components, with distinct anatomical distributions and sensitivity to age. Further, voxel-wise analysis revealed age-related differences in AWF-based brain asymmetry, indicating less apparent left-right hemisphere difference with higher age. Finally, we demonstrated that NODDI metrics suffer from a quite strong dependence on used numerical algorithms and post-processing pipeline. The analysis based on AWF metrics strongly depends on the used diffusion approach and leads to poorly reproducible results.

摘要

具有轴突内和轴突外水池的标准扩散MRI模型提供了一组描述脑白质结构的微观结构参数。然而,标准模型中的非线性以及噪声和成像伪影对扩散数据的污染使得扩散指标的估计具有挑战性。为了开发可靠的扩散方法并避免计算模型退化,需要额外的理论假设以实现稳定的数值实现。先进的扩散方法能够估计轴突内水分数(AWF),它描述了脑组织的一个关键结构特征。AWF可以被解释为神经突密度的间接测量或替代指标,并且具有作为有用临床生物标志物的潜力。已有的扩散方法,如白质束完整性、神经突方向分散和密度成像(NODDI)以及球面均值技术,在各自的理论框架内提供了AWF的估计值。在本研究中,我们使用不同的扩散方法估计了AWF指标,并在来自英国生物银行的182名受试者的子样本中比较了不同指标之间的脑不对称测量值。通过链接独立成分分析进行多变量分解表明,从不同扩散方法得出的各种AWF替代指标部分反映了独立成分的非重叠方差,具有不同的解剖分布和对年龄的敏感性。此外,逐体素分析揭示了基于AWF的脑不对称中与年龄相关的差异,表明随着年龄增长,左右半球差异不太明显。最后,我们证明NODDI指标对所使用的数值算法和后处理管道有很强的依赖性。基于AWF指标的分析强烈依赖于所使用的扩散方法,并且导致结果的可重复性较差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be5/12166922/706238767f0f/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验