Suppr超能文献

血管紧张素转化酶 2(ACE2),SARS-CoV-2 感染的受体:生物化学、结构、变构作用以及 ACE2 调节剂潜在开发的评估。

ACE2, the Receptor that Enables Infection by SARS-CoV-2: Biochemistry, Structure, Allostery and Evaluation of the Potential Development of ACE2 Modulators.

机构信息

Chemical Biology of Regulatory Mechanisms, IBioBA-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, Buenos Aires, Argentina.

Internal Medicine I, Frankfurt University Hospital, Theodor-Stern-Kai 7, Frankfurt am Main, Germany.

出版信息

ChemMedChem. 2020 Sep 16;15(18):1682-1690. doi: 10.1002/cmdc.202000368. Epub 2020 Aug 11.

Abstract

Angiotensin converting enzyme 2 (ACE2) is the human receptor that interacts with the spike protein of coronaviruses, including the one that produced the 2020 coronavirus pandemic (COVID-19). Thus, ACE2 is a potential target for drugs that disrupt the interaction of human cells with SARS-CoV-2 to abolish infection. There is also interest in drugs that inhibit or activate ACE2, that is, for cardiovascular disorders or colitis. Compounds binding at alternative sites could allosterically affect the interaction with the spike protein. Herein, we review biochemical, chemical biology, and structural information on ACE2, including the recent cryoEM structures of full-length ACE2. We conclude that ACE2 is very dynamic and that allosteric drugs could be developed to target ACE2. At the time of the 2020 pandemic, we suggest that available ACE2 inhibitors or activators in advanced development should be tested for their ability to allosterically displace the interaction between ACE2 and the spike protein.

摘要

血管紧张素转换酶 2(ACE2)是与人冠状病毒刺突蛋白相互作用的人类受体,包括导致 2020 年冠状病毒病(COVID-19)大流行的冠状病毒。因此,ACE2 是一种潜在的药物靶点,可以破坏人类细胞与 SARS-CoV-2 的相互作用以消除感染。人们还对抑制或激活 ACE2 的药物感兴趣,即用于心血管疾病或结肠炎。结合在替代部位的化合物可以变构影响与刺突蛋白的相互作用。本文综述了 ACE2 的生化、化学生物学和结构信息,包括最近的全长 ACE2 的 cryoEM 结构。我们得出结论,ACE2 非常具有动态性,并且可以开发变构药物来靶向 ACE2。在 2020 年大流行期间,我们建议应测试处于高级开发阶段的可用 ACE2 抑制剂或激活剂,以确定它们是否能够变构置换 ACE2 与刺突蛋白之间的相互作用。

相似文献

2
Enhanced Binding of SARS-CoV-2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites.
ACS Nano. 2020 Aug 25;14(8):10616-10623. doi: 10.1021/acsnano.0c04798. Epub 2020 Aug 4.
3
Structural basis of receptor recognition by SARS-CoV-2.
Nature. 2020 May;581(7807):221-224. doi: 10.1038/s41586-020-2179-y. Epub 2020 Mar 30.
4
Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.
Nature. 2020 May;581(7807):215-220. doi: 10.1038/s41586-020-2180-5. Epub 2020 Mar 30.
7
SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy.
Theranostics. 2020 Jun 12;10(16):7448-7464. doi: 10.7150/thno.48076. eCollection 2020.
8
Highly conserved binding region of ACE2 as a receptor for SARS-CoV-2 between humans and mammals.
Vet Q. 2020 Dec;40(1):243-249. doi: 10.1080/01652176.2020.1823522.
9
Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor.
Cell Host Microbe. 2020 Oct 7;28(4):586-601.e6. doi: 10.1016/j.chom.2020.08.004. Epub 2020 Aug 24.

引用本文的文献

1
Food-Derived Up-Regulators and Activators of Angiotensin Converting Enzyme 2: A Review.
J Agric Food Chem. 2024 Jun 12;72(23):12896-12914. doi: 10.1021/acs.jafc.4c01594. Epub 2024 May 29.
4
Design of novel disturbing peptides against ACE2 SARS-CoV-2 spike-binding region by computational approaches.
Front Pharmacol. 2022 Nov 11;13:996005. doi: 10.3389/fphar.2022.996005. eCollection 2022.
5
Host-Cell Surface Binding Targets in SARS-CoV-2 for Drug Design.
Curr Pharm Des. 2022;28(45):3583-3591. doi: 10.2174/1381612829666221123111849.
6
Angiotensin-Converting Enzyme 2-Based Biosensing Modalities and Devices for Coronavirus Detection.
Biosensors (Basel). 2022 Nov 7;12(11):984. doi: 10.3390/bios12110984.
8
Pharmacological therapies and drug development targeting SARS-CoV-2 infection.
Cytokine Growth Factor Rev. 2022 Dec;68:13-24. doi: 10.1016/j.cytogfr.2022.10.003. Epub 2022 Oct 13.
10
Allosteric Binders of ACE2 Are Promising Anti-SARS-CoV-2 Agents.
ACS Pharmacol Transl Sci. 2022 Jun 22;5(7):468-478. doi: 10.1021/acsptsci.2c00049. eCollection 2022 Jul 8.

本文引用的文献

1
Targeting ACE2-RBD Interaction as a Platform for COVID-19 Therapeutics: Development and Drug-Repurposing Screen of an AlphaLISA Proximity Assay.
ACS Pharmacol Transl Sci. 2020 Nov 17;3(6):1352-1360. doi: 10.1021/acsptsci.0c00161. eCollection 2020 Dec 11.
3
Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2.
Cell. 2020 May 14;181(4):894-904.e9. doi: 10.1016/j.cell.2020.03.045. Epub 2020 Apr 9.
5
Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic.
Nat Rev Nephrol. 2020 Jun;16(6):305-307. doi: 10.1038/s41581-020-0279-4.
6
Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.
Cell. 2020 Apr 16;181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058. Epub 2020 Mar 9.
7
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.
8
Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations.
Cell Discov. 2020 Feb 24;6:11. doi: 10.1038/s41421-020-0147-1. eCollection 2020.
9
Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.
Science. 2020 Mar 27;367(6485):1444-1448. doi: 10.1126/science.abb2762. Epub 2020 Mar 4.
10
B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses hypertension and cardiac dysfunction.
Nat Commun. 2020 Feb 26;11(1):1058. doi: 10.1038/s41467-020-14867-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验