Suppr超能文献

基于波动的聚类揭示了不同哮喘严重程度患者的表型。

Fluctuation-based clustering reveals phenotypes of patients with different asthma severity.

作者信息

Jochmann Anja, Artusio Luca, Sharifian Hoda, Jamalzadeh Angela, Fleming Louise J, Bush Andrew, Frey Urs, Delgado-Eckert Edgar

机构信息

Dept of Respiratory Paediatrics, Royal Brompton Hospital, London, UK.

University of Basel, University Children's Hospital (UKBB), Basel, Switzerland.

出版信息

ERJ Open Res. 2020 Jul 6;6(2). doi: 10.1183/23120541.00007-2019. eCollection 2020 Apr.

Abstract

Serial peak expiratory flow (PEF) measurements can identify phenotypes in severe adult asthma, enabling more targeted treatment. The feasibility of this approach in children has not been investigated. Overall, 105 children (67% male, median age 12.4 years) with a range of asthma severities were recruited and followed up over a median of 92 days. PEF was measured twice daily. Fluctuation-based clustering (FBC) was used to identify clusters based on PEF fluctuations. The patients' clinical characteristics were compared between clusters. Three PEF clusters were identified in 44 children with sufficient measurements. Cluster 1 (27% of patients: n=12) had impaired spirometry (mean forced expiratory volume in 1 s (FEV) 71% predicted), significantly higher exhaled nitric oxide (≥35 ppb) and uncontrolled asthma (asthma control test (ACT) score <20 of 25). Cluster 2 (45%: n=20) had normal spirometry, the highest proportion of difficult asthma and significantly more patients on a high dose of inhaled corticosteroids (≥800 µg budesonide). Cluster 3 (27%: n=12) had mean FEV 92% predicted, the highest proportion of patients with no bronchodilator reversibility, a low ICS dose (≤400 µg budesonide), and controlled asthma (ACT scores ≥20 of 25). Three clinically relevant paediatric asthma clusters were identified using FBC analysis on PEF measurements, which could improve telemonitoring diagnostics. The method remains robust even when 80% of measurements were removed. Further research will determine clinical applicability.

摘要

连续峰值呼气流速(PEF)测量可识别重度成年哮喘的表型,从而实现更具针对性的治疗。该方法在儿童中的可行性尚未得到研究。总体而言,招募了105名哮喘严重程度各异的儿童(67%为男性,中位年龄12.4岁),并进行了中位时间为92天的随访。每天测量两次PEF。基于波动的聚类分析(FBC)用于根据PEF波动识别聚类。比较各聚类间患者的临床特征。在44名有足够测量数据的儿童中识别出三个PEF聚类。聚类1(占患者的27%:n = 12)肺活量测定受损(1秒用力呼气容积(FEV)平均为预测值的71%),呼出一氧化氮显著更高(≥35 ppb)且哮喘未得到控制(哮喘控制测试(ACT)得分<25分中的20分)。聚类2(45%:n = 20)肺活量测定正常,难治性哮喘比例最高,且使用高剂量吸入性糖皮质激素(≥800 µg布地奈德)的患者明显更多。聚类3(27%:n = 12)FEV平均为预测值的92%,无支气管扩张剂可逆性的患者比例最高,吸入性糖皮质激素剂量低(≤400 µg布地奈德),且哮喘得到控制(ACT得分≥25分中的20分)。通过对PEF测量进行FBC分析,识别出了三个具有临床相关性的儿童哮喘聚类,这可能会改善远程监测诊断。即使去除80%的测量数据,该方法仍然稳健。进一步的研究将确定其临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2a7/7335841/7e507a6aa010/00007-2019.01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验