Connell Justin G, Zorko Milena, Agarwal Garvit, Yang Mengxi, Liao Chen, Assary Rajeev S, Strmcnik Dusan, Markovic Nenad M
Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
ACS Appl Mater Interfaces. 2020 Aug 12;12(32):36137-36147. doi: 10.1021/acsami.0c09404. Epub 2020 Jul 29.
Developing next-generation battery chemistries that move beyond traditional Li-ion systems is critical to enabling transformative advances in electrified transportation and grid-level energy storage. In this work, we provide the first evidence for common descriptors for improved reversibility of metal plating/stripping in nonaqueous electrolytes for multivalent ion batteries. Focusing first on the specific role of chloride (Cl) in promoting electrochemical reversibility in multivalent systems, rotating disk (RDE) and ring-disk electrode (RRDE) investigations were performed utilizing a variety of divalent cations (Mg, Zn, and Cu) and the bis-(trifluoromethane sulfonyl) imide (TFSI) anion. By introducing varying concentrations of Cl, a cooperative effect is observed between TFSI and Cl that yields the more reversible behavior of mixed electrolytes relative to electrolytes containing only TFSI. This effect is shown to be general for Mg, Zn, and Cu electrodeposition, and mechanistic understanding of the role of Cl in improving reversibility of TFSI-based electrolytes is obtained through the combination of R(R)DE experimental results and density functional theory (DFT) evaluation of the redox activity and thermodynamic stability of various TFSI- and Cl-based solution complexes of metal ions. The cooperative anion effect is further generalized to other mixed-anion systems, where systematic variations in anion association strength predicted from DFT (i.e., Cl > OTf ≈ TFSI > BF > PF) yield corresponding trends in redox potentials and improvements of ≥200 mV in the reversibility of metal deposition/dissolution. These results identify anion association strength as a common descriptor for the reversibility of divalent metal anodes and suggest a set of general design principles for developing new electrolytes with improved activity and stability.
开发超越传统锂离子系统的下一代电池化学对于推动电动交通和电网级储能的变革性进展至关重要。在这项工作中,我们首次提供了多价离子电池非水电解质中改善金属电镀/剥离可逆性的通用描述符的证据。首先关注氯离子(Cl)在促进多价系统中电化学可逆性方面的特定作用,利用多种二价阳离子(Mg、Zn和Cu)以及双(三氟甲烷磺酰)亚胺(TFSI)阴离子进行了旋转圆盘(RDE)和旋转环盘电极(RRDE)研究。通过引入不同浓度的Cl,观察到TFSI和Cl之间的协同效应,相对于仅含TFSI的电解质,混合电解质表现出更可逆的行为。这种效应在Mg、Zn和Cu电沉积中具有普遍性,通过结合R(R)DE实验结果以及对各种基于TFSI和Cl的金属离子溶液络合物的氧化还原活性和热力学稳定性的密度泛函理论(DFT)评估,获得了对Cl在改善基于TFSI的电解质可逆性中作用的机理理解。协同阴离子效应进一步推广到其他混合阴离子系统,其中根据DFT预测的阴离子缔合强度的系统变化(即Cl>OTf≈TFSI>BF>PF)在氧化还原电位中产生相应趋势,并且金属沉积/溶解的可逆性提高≥200 mV。这些结果确定阴离子缔合强度是二价金属阳极可逆性的通用描述符,并提出了一套用于开发具有改进活性和稳定性的新型电解质的一般设计原则。