Suppr超能文献

机器学习方法可准确将粗粒化模型回溯映射到全原子模型。

Machine learning approach for accurate backmapping of coarse-grained models to all-atom models.

机构信息

Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.

出版信息

Chem Commun (Camb). 2020 Aug 13;56(65):9312-9315. doi: 10.1039/d0cc02651d.

Abstract

Four different machine learning (ML) regression models: artificial neural network, k-nearest neighbors, Gaussian process regression and random forest were built to backmap coarse-grained models to all-atom models. The ML models showed better predictions than the existing backmapping approaches for selected structures, suggesting the applications of the ML models for backmapping.

摘要

四种不同的机器学习 (ML) 回归模型:人工神经网络、k-最近邻、高斯过程回归和随机森林,被构建用于将粗粒度模型反向映射到全原子模型。ML 模型对选定结构的预测优于现有的反向映射方法,这表明 ML 模型在反向映射中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验