Monmarché Pierre, Weisman Jérémy, Lagardère Louis, Piquemal Jean-Philip
Sorbonne Université, Laboratoire Jacques-Louis Lions, UMR 7589 CNRS, and Laboratoire de Chimie Théorique, UMR 7616 CNRS, F-75005 Paris, France.
Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, F-75005 Paris, France.
J Chem Phys. 2020 Jul 14;153(2):024101. doi: 10.1063/5.0005060.
We propose a new route to accelerate molecular dynamics through the use of velocity jump processes allowing for an adaptive time step specific to each atom-atom pair (two-body) interactions. We start by introducing the formalism of the new velocity jump molecular dynamics, ergodic with respect to the canonical measure. We then introduce the new BOUNCE integrator that allows for long-range forces to be evaluated at random and optimal time steps, leading to strong savings in direct space. The accuracy and computational performances of a first BOUNCE implementation dedicated to classical (non-polarizable) force fields are tested in the cases of pure direct-space droplet-like simulations and of periodic boundary conditions (PBC) simulations using Smooth Particle Mesh Ewald method. An analysis of the capability of BOUNCE to reproduce several condensed-phase properties is provided. Since electrostatics and van der Waals two-body contributions are evaluated much less often than with standard integrators using a 1 fs time step, up to a 400% direct-space acceleration is observed. Applying the reversible reference system propagator algorithms [RESPA(1)] to reciprocal-space (many-body) interactions allows BOUNCE-RESPA(1) to maintain large speedups in PBC while maintaining precision. Overall, we show that replacing the BAOAB standard Langevin integrator by the BOUNCE adaptive framework preserves a similar accuracy and leads to significant computational savings.
我们提出了一种新途径,通过使用速度跳跃过程来加速分子动力学,该过程允许针对每个原子 - 原子对(两体)相互作用采用自适应时间步长。我们首先介绍新的速度跳跃分子动力学的形式体系,它对于正则测度是遍历的。然后我们引入新的BOUNCE积分器,该积分器允许在随机且最优的时间步长下评估长程力,从而在实空间中实现显著的节省。在纯实空间液滴状模拟以及使用光滑粒子网格埃瓦尔德方法的周期性边界条件(PBC)模拟的情况下,测试了首个专门用于经典(非极化)力场的BOUNCE实现的准确性和计算性能。提供了对BOUNCE再现几种凝聚相性质能力的分析。由于与使用1飞秒时间步长的标准积分器相比,静电和范德华两体贡献的评估频率要低得多,因此观察到实空间加速高达400%。将可逆参考系统传播子算法[RESPA(1)]应用于倒易空间(多体)相互作用,使得BOUNCE - RESPA(1)在保持精度的同时,在PBC中能保持较大的加速比。总体而言,我们表明用BOUNCE自适应框架取代BAOAB标准朗之万积分器能保持相似的精度,并带来显著的计算节省。