Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 75005 Paris, France.
Intitut Parisien de Chimie Physique et Théorique, Sorbonne Université, FR 2622 CNRS, 75005 Paris, France.
Acc Chem Res. 2021 Jul 6;54(13):2812-2822. doi: 10.1021/acs.accounts.0c00662. Epub 2021 May 7.
The computational modeling of realistic extended systems, relevant in, e.g., Chemistry and Biophysics, is a fundamental problem of paramount importance in contemporary research. Enzymatic catalysis and photoinduced processes in pigment-protein complexes are typical problems targeted by computer-aided approaches, to complement experiments as interpretative tools at a molecular scale. The daunting complexity of this task lies in between the opposite stringent requirements of results' reliability for structural/dynamical properties and related intermolecular interactions, and a mandatory principle of realism in the modeling strategy. Therefore, in practice, a truly realistic computational model of a biologically relevant system can easily fail to meet the accuracy requirement, in order to balance the excessive computational cost necessary to reach the desired precision.To address such an "accuracy vs reality" dualistic requirement, mixed quantum mechanics/classical mechanics approaches within Atomistic (i.e., preserving the discrete particle configuration) Polarizable Embeddings (QM/APEs) methods have been proposed over the years. In this Account, we review recent developments in the design and application of general QM/APE methods, targeting situations where a local intrinsically quantum behavior is coupled to a large molecular system (i.e., an environment), often involving processes with different dynamical time scales, in order to avoid brute-force, unpractical quantum chemistry calculations on the complete system.In the first place, our interest is devoted to the available APEs models presently implemented in computational software, highlighting the quantum chemistry methods that can be used to treat the QM subsystem. We review the coupling strategy between the QM subsystem and the APE, which requires to examine the way the QM/MM mutual interactions are accounted for and how the polarization of the classical environment is considered with respect to (wrt) the quantum variables. Because of the need of reliable molecular and macromolecular structures, a pivotal aspect to address here is the handling of the system dynamics (i.e., gradients wrt nuclear positions are required), especially for large molecular assemblies composed by an overwhelming number of atoms, exploring many conformations on a complex energy landscape.Alongside, we highlight our views on the necessary steps to take toward more accurate general-purposes and transferable explicit embeddings. The main objective to achieve here is to design a more physically grounded multiscale approach. To do so, one should apply advanced new generation classical models to account for refined induction effects that are able to (i) improve the quality of QM/MM interaction energies; (ii) enhance transferability by avoiding the compulsory partial (or total) reparameterization of the classical model. Moreover, the extension of recent developments originating from the field of advanced classical molecular dynamics (MD) to the realm of QM/APE methods is a key direction to improve both speed and efficiency for the phase space exploration of systems of growing size and complexity.Lastly, we point out specific research topics where an advanced QM/APE dynamics can certainly shed some light. For example, we discuss chemical reactions in "harsh" environments and the case of spectroscopic theoretical modeling where the inclusion of refined environment effects is often mandatory.
现实扩展系统的计算建模在当代研究中具有至关重要的地位,例如化学和生物物理学中的建模。酶催化和色素-蛋白复合物中的光诱导过程是计算机辅助方法的典型目标,以作为分子尺度上的解释工具来补充实验。这项任务的艰巨复杂性在于结果对结构/动力学特性和相关分子间相互作用的可靠性要求与建模策略的真实性要求之间存在矛盾。因此,在实践中,为了平衡达到所需精度所需的过高计算成本,真正逼真的生物相关系统的计算模型很容易无法满足准确性要求。
为了解决这种“准确性与真实性”的二元要求,近年来提出了基于原子的混合量子力学/经典力学方法(即保留离散粒子构型)极化嵌入(QM/APEs)方法。在本报告中,我们回顾了针对大分子系统(即环境)中存在局部内在量子行为的通用 QM/APE 方法的设计和应用的最新进展,通常涉及不同动力学时间尺度的过程,以避免对完整系统进行大规模、不切实际的量子化学计算。
首先,我们的兴趣集中在目前在计算软件中实现的可用 APE 模型上,重点介绍可以用于处理 QM 子系统的量子化学方法。我们回顾了 QM 子系统和 APE 之间的耦合策略,这需要检查 QM/MM 相互作用的计算方式以及如何考虑经典环境的极化相对于( wrt )量子变量。由于需要可靠的分子和大分子结构,这里需要解决的一个关键方面是处理系统动力学(即需要核位置的梯度),特别是对于由大量原子组成的大分子组装体,需要在复杂的能量曲线上探索许多构象。
同时,我们强调了我们对更准确的通用和可转移显式嵌入所需采取的必要步骤的看法。这里的主要目标是设计更基于物理的多尺度方法。为此,应该应用先进的新一代经典模型来考虑改进的感应效应,这些效应能够:(i)提高 QM/MM 相互作用能的质量;(ii)通过避免对经典模型的强制性部分(或全部)重新参数化来提高可转移性。此外,将源自先进经典分子动力学(MD)领域的最新进展扩展到 QM/APE 方法领域是提高系统尺寸和复杂性不断增长的相空间探索速度和效率的关键方向。
最后,我们指出了先进的 QM/APE 动力学肯定会有所帮助的特定研究课题。例如,我们讨论了“恶劣”环境中的化学反应以及光谱理论建模的情况,在这些情况下,包含改进的环境效应通常是强制性的。