Department of Chemistry, Northwestern University, Evanston, IL 60208.
International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208.
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17543-17550. doi: 10.1073/pnas.2005794117. Epub 2020 Jul 15.
Highly heterogenous cancers, such as triple-negative breast cancer (TNBC), remain challenging immunotherapeutic targets. Herein, we describe the synthesis and evaluation of immunotherapeutic liposomal spherical nucleic acids (SNAs) for TNBC therapy. The SNAs comprise immunostimulatory oligonucleotides (CpG-1826) as adjuvants and encapsulate lysates derived from TNBC cell lines as antigens. The resulting nanostructures (Lys-SNAs) enhance the codelivery of adjuvant and antigen to immune cells when compared to simple mixtures of lysates with linear oligonucleotides both in vitro and in vivo, and reduce tumor growth relative to simple mixtures of lysate and CpG-1826 (Lys-Mix) in both Py230 and Py8119 orthotopic syngeneic mouse models of TNBC. Furthermore, oxidizing TNBC cells prior to lysis and incorporation into SNAs (OxLys-SNAs) significantly increases the activation of dendritic cells relative to their nonoxidized counterparts. When administered peritumorally in vivo in the EMT6 mouse mammary carcinoma model, OxLys-SNAs significantly increase the population of cytotoxic CD8+ T cells and simultaneously decrease the population of myeloid derived suppressor cells (MDSCs) within the tumor microenvironment, when compared with Lys-SNAs and simple mixtures of oxidized lysates with CpG-1826. Importantly, animals administered OxLys-SNAs exhibit significant antitumor activity and prolonged survival relative to all other treatment groups, and resist tumor rechallenge. Together, these results show that the way lysates are processed and packaged has a profound impact on their immunogenicity and therapeutic efficacy. Moreover, this work points toward the potential of oxidized tumor cell lysate-loaded SNAs as a potent class of immunotherapeutics for cancers lacking common therapeutic targets.
高度异质性的癌症,如三阴性乳腺癌(TNBC),仍然是具有挑战性的免疫治疗靶点。在此,我们描述了用于 TNBC 治疗的免疫治疗脂质体球形核酸(SNA)的合成和评价。SNA 包含免疫刺激寡核苷酸(CpG-1826)作为佐剂,并包封来自 TNBC 细胞系的裂解物作为抗原。与线性寡核苷酸与裂解物的简单混合物相比,所得纳米结构(Lys-SNA)在体外和体内均增强了佐剂和抗原向免疫细胞的共递呈,并且相对于裂解物和 CpG-1826 的简单混合物(Lys-Mix)减少了肿瘤生长在 Py230 和 Py8119 两种 TNBC 同源原位小鼠模型中。此外,在裂解前氧化 TNBC 细胞并将其掺入 SNA 中(OxLys-SNA)与未氧化的细胞相比,显著增加树突状细胞的激活。当在 EMT6 小鼠乳腺肿瘤模型中进行肿瘤周围体内给药时,与 Lys-SNA 和 CpG-1826 与氧化裂解物的简单混合物相比,OxLys-SNA 显著增加了肿瘤微环境中细胞毒性 CD8+T 细胞的数量,同时减少了髓样来源抑制细胞(MDSC)的数量。重要的是,与所有其他治疗组相比,给予 OxLys-SNA 的动物表现出显著的抗肿瘤活性和延长的存活时间,并且抵抗肿瘤再挑战。总之,这些结果表明裂解物的处理和包装方式对其免疫原性和治疗效果有深远的影响。此外,这项工作表明,负载氧化肿瘤细胞裂解物的 SNA 作为一种潜在的免疫治疗剂,具有治疗缺乏常见治疗靶点的癌症的潜力。