Liu Junqiu, Tian Hao, Lucas Erwan, Raja Arslan S, Lihachev Grigory, Wang Rui Ning, He Jijun, Liu Tianyi, Anderson Miles H, Weng Wenle, Bhave Sunil A, Kippenberg Tobias J
Laboratory of Photonics and Quantum Measurements, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
OxideMEMS Lab, Purdue University, West Lafayette, IN, USA.
Nature. 2020 Jul;583(7816):385-390. doi: 10.1038/s41586-020-2465-8. Epub 2020 Jul 15.
High-speed actuation of laser frequency is critical in applications using lasers and frequency combs, and is a prerequisite for phase locking, frequency stabilization and stability transfer among optical carriers. For example, high-bandwidth feedback control of frequency combs is used in optical-frequency synthesis, frequency division and optical clocks. Soliton microcombs have emerged as chip-scale frequency comb sources, and have been used in system-level demonstrations. Yet integrated microcombs using thermal heaters have limited actuation bandwidths of up to 10 kilohertz. Consequently, megahertz-bandwidth actuation and locking of microcombs have only been achieved with off-chip bulk component modulators. Here we demonstrate high-speed soliton microcomb actuation using integrated piezoelectric components. By monolithically integrating AlN actuators on ultralow-loss SiN photonic circuits, we demonstrate voltage-controlled soliton initiation, tuning and stabilization with megahertz bandwidth. The AlN actuators use 300 nanowatts of power and feature bidirectional tuning, high linearity and low hysteresis. They exhibit a flat actuation response up to 1 megahertz-substantially exceeding bulk piezo tuning bandwidth-that is extendable to higher frequencies by overcoming coupling to acoustic contour modes of the chip. Via synchronous tuning of the laser and the microresonator, we exploit this ability to frequency-shift the optical comb spectrum (that is, to change the comb's carrier-envelope offset frequency) and make excursions beyond the soliton existence range. This enables a massively parallel frequency-modulated engine for lidar (light detection and ranging), with increased frequency excursion, lower power and elimination of channel distortions resulting from the soliton Raman self-frequency shift. Moreover, by modulating at a rate matching the frequency of high-overtone bulk acoustic resonances, resonant build-up of bulk acoustic energy allows a 14-fold reduction of the required driving voltage, making it compatible with CMOS (complementary metal-oxide-semiconductor) electronics. Our approach endows soliton microcombs with integrated, ultralow-power and fast actuation, expanding the repertoire of technological applications of microcombs.
激光频率的高速驱动在使用激光和频率梳的应用中至关重要,并且是光载波之间锁相、频率稳定和稳定性传递的先决条件。例如,频率梳的高带宽反馈控制用于光频合成、分频和光钟。孤子微梳已成为芯片级频率梳源,并已用于系统级演示。然而,使用热加热器的集成微梳的驱动带宽限制在高达10千赫兹。因此,微梳的兆赫兹带宽驱动和锁定仅通过片外体组件调制器实现。在此,我们展示了使用集成压电组件的高速孤子微梳驱动。通过在超低损耗氮化硅光子电路上单片集成氮化铝致动器,我们展示了具有兆赫兹带宽的电压控制孤子产生、调谐和稳定。氮化铝致动器功耗为300纳瓦,具有双向调谐、高线性度和低滞后特性。它们在高达1兆赫兹的频率范围内表现出平坦的驱动响应,大大超过了体压电调谐带宽,通过克服与芯片声轮廓模式的耦合可扩展到更高频率。通过对激光器和微谐振器进行同步调谐,我们利用这种能力对光梳频谱进行频移(即改变梳的载波包络偏移频率),并超出孤子存在范围。这使得用于激光雷达(光探测和测距)的大规模并行调频引擎成为可能,具有更大的频率偏移、更低的功耗以及消除了孤子拉曼自频移导致的信道失真。此外,通过以与高泛音体声共振频率匹配的速率进行调制,体声能量的共振积累可使所需驱动电压降低14倍,使其与互补金属氧化物半导体(CMOS)电子器件兼容。我们的方法赋予孤子微梳集成、超低功耗和快速驱动的特性,扩展了微梳的技术应用范围。