Kontoleta Evgenia, Tsoukala Alexandra, Askes Sven H C, Zoethout Erwin, Oksenberg Eitan, Agrawal Harshal, Garnett Erik C
Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands.
Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ Eindhoven, Netherlands.
ACS Appl Mater Interfaces. 2020 Aug 12;12(32):35986-35994. doi: 10.1021/acsami.0c04941. Epub 2020 Jul 30.
Hot electrons generated in metal nanoparticles can drive chemical reactions and selectively deposit cocatalyst materials on the plasmonic hotspots, the areas where the decay of plasmons takes place and the hot electrons are created. While hot electrons have been extensively used for nanomaterial formation, the utilization of hot holes for simultaneous cocatalyst deposition has not yet been explored. Herein, we demonstrate that hot holes can drive an oxidation reaction for the deposition of the manganese oxide (MnO) cocatalyst on different plasmonic gold (Au) nanostructures on a thin titanium dioxide (TiO) layer, excited at their surface plasmon resonance. An 80% correlation between the hot-hole deposition sites and the simulated plasmonic hotspot location is showed when considering the typical hot-hole diffusion length. Simultaneous deposition of more than one cocatalyst is also achieved on one of the investigated plasmonic systems (Au plasmonic nanoislands) through the hot-hole oxidation of a manganese salt and the hot-electron reduction of a platinum precursor in the same solution. These results add more flexibility to the use of hot carriers and open up the way for the design of complex photocatalytic nanostructures.
金属纳米颗粒中产生的热电子可以驱动化学反应,并将助催化剂材料选择性地沉积在等离子体热点上,等离子体热点是等离子体发生衰减并产生热电子的区域。虽然热电子已被广泛用于纳米材料的形成,但利用热空穴同时沉积助催化剂尚未得到探索。在此,我们证明热空穴可以驱动氧化反应,从而在薄二氧化钛(TiO)层上不同的等离子体金(Au)纳米结构上沉积氧化锰(MnO)助催化剂,这些纳米结构在其表面等离子体共振下被激发。考虑到典型的热空穴扩散长度时,热空穴沉积位点与模拟的等离子体热点位置之间显示出80%的相关性。通过在同一溶液中对锰盐进行热空穴氧化和对铂前驱体进行热电子还原,还在其中一种研究的等离子体系统(Au等离子体纳米岛)上实现了多种助催化剂的同时沉积。这些结果为热载流子的使用增加了更多灵活性,并为复杂光催化纳米结构的设计开辟了道路。