Du Xiaomeng, Wang Teng, Li Yonglong, Zhu Aonan, Hu Yanfang, Du Aoxuan, Zhao Yan, Xie Wei
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China.
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
Nano Lett. 2024 Sep 18;24(37):11648-11653. doi: 10.1021/acs.nanolett.4c03265. Epub 2024 Sep 3.
Energetic carriers generated by localized surface plasmon resonance (LSPR) provide an efficient way to drive chemical reactions. However, their dynamics and impact on surface reactions remain unknown due to the challenge in observing hot holes. This makes it difficult to correlate the reduction and oxidation half-reactions involving hot electrons and holes, respectively. Here we detect hot holes in their chemical form, Ag(I), on a Ag surface using surface-enhanced Raman scattering (SERS) of SO as a hole-specific label. It allows us to determine the dynamic correlations of hot electrons and holes. We find that the equilibrium of holes is the key factor of the surface chemistry, and the wavelength-dependent plasmonic chemical anode refilling (PCAR) effect plays an important role, in addition to the LSPR, in promoting the electron transfer. This method paves the way for visualizing hot holes with nanoscale spatial resolution toward the rational design of a plasmonic catalytic platform.
由局域表面等离子体共振(LSPR)产生的能量载体为驱动化学反应提供了一种有效方式。然而,由于观察热空穴存在挑战,它们的动力学以及对表面反应的影响仍然未知。这使得分别涉及热电子和热空穴的还原和氧化半反应难以关联起来。在此,我们利用SO作为空穴特异性标记物的表面增强拉曼散射(SERS),在银表面检测处于化学形式Ag(I)的热空穴。这使我们能够确定热电子和热空穴的动态相关性。我们发现空穴的平衡是表面化学的关键因素,并且除了LSPR之外,波长依赖的等离子体化学阳极再填充(PCAR)效应在促进电子转移方面也起着重要作用。这种方法为以纳米级空间分辨率可视化热空穴从而合理设计等离子体催化平台铺平了道路。