Suppr超能文献

作为相关输入参数的函数,对基质辅助激光解吸电离-2(MALDI-2)中后电离效率的详细表征。

Detailed Characterization of the Postionization Efficiencies in MALDI-2 as a Function of Relevant Input Parameters.

作者信息

Potthoff Alexander, Dreisewerd Klaus, Soltwisch Jens

机构信息

Institute of Hygiene, University of Münster, 48149 Münster, Germany.

Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149 Münster, Germany.

出版信息

J Am Soc Mass Spectrom. 2020 Sep 2;31(9):1844-1853. doi: 10.1021/jasms.0c00072. Epub 2020 Jul 30.

Abstract

A recently introduced technique based on MALDI with laser-induced postionization (PI), also named MALDI-2, increases the ion yields for numerous classes of lipids, metabolites, and carbohydrates in MALDI-MS imaging experiments under certain experimental conditions. Here, we used a semiautomatic LabVIEW-based protocol to investigate and optimize the efficiency of the PI process dependent on four relevant input parameters and a dense parameter grid: pulse energies of the two lasers, delay between the laser pulses, and buffer gas pressure in the ion source. All experiments were conducted with a modified MALDI-2 Synapt G2-S mass spectrometer (Waters) and use of a focal spot size on the sample of 15-17 μm. A wavelength-tunable optical parametric oscillator (OPO) laser served for PI at 260 or 280 nm. The investigated MALDI matrices were: 2,5-dihydroxybenzoic acid (positive ion mode, +), 2,5-dihydroxyacetophenone (+), α-cyano-4-hydroxycinnamic acid (+), norharmane (negative-ion mode, -), and 1,5-diaminonapthalene (-). A porcine brain extract served as lipid standard. In the positive-ion mode, a maximum boost for the generated [M + H] species was found with a N buffer gas pressure of ∼2 mbar and a delay between the laser emissions of ∼10 μs. Higher optimal delay settings of several 10 μs were registered for the two studied matrices in negative-ion mode. With regard to the laser fluences, best PI efficiencies were reached using maximum available ablation and PI laser pulse energies of up to 25 and 160 μJ, respectively. For analytes not profiting from MALDI-2, best ion signal yields were recorded for ablation laser pulse energies of around 7 μJ, depending on the MALDI matrix. At higher laser pulse energies, sizable fragmentation is observed for these ions. The PI laser pulse energy did not have any influence on the ion signals of these species. For optimal ion yield of all analyte species, best results were obtained with an ablation laser pulse energy of ∼7 μJ and a PI laser pulse energy of ∼160 μJ. Our comprehensive data set provides valuable insight into the mechanisms underlying the MALDI-2 processes and could help to further optimize this emerging technique.

摘要

一种最近引入的基于基质辅助激光解吸电离(MALDI)并结合激光诱导后电离(PI)的技术,也称为MALDI-2,在某些实验条件下的MALDI质谱成像实验中,可提高多种脂质、代谢物和碳水化合物的离子产率。在此,我们使用了一种基于LabVIEW的半自动方案,以研究和优化PI过程的效率,该效率取决于四个相关输入参数和一个密集的参数网格:两台激光器的脉冲能量、激光脉冲之间的延迟以及离子源中的缓冲气体压力。所有实验均使用改装后的MALDI-2 Synapt G2-S质谱仪(沃特世公司)进行,样品上的焦点光斑尺寸为15 - 17μm。一台波长可调谐光参量振荡器(OPO)激光器用于在260或280nm处进行PI。所研究的MALDI基质有:2,5 - 二羟基苯甲酸(正离子模式,+)、2,5 - 二羟基苯乙酮(+)、α - 氰基 - 4 - 羟基肉桂酸(+)、去氢骆驼蓬碱(负离子模式,-)和1,5 - 二氨基萘(-)。猪脑提取物用作脂质标准品。在正离子模式下,发现当缓冲气体压力约为2毫巴且激光发射之间的延迟约为10微秒时,生成的[M + H]物种的离子产率有最大提升。在负离子模式下,对于所研究的两种基质,记录到更高的最佳延迟设置为几十微秒。关于激光能量密度,分别使用高达25和160μJ的最大可用烧蚀和PI激光脉冲能量时,可达到最佳的PI效率。对于无法从MALDI-2中受益的分析物,根据MALDI基质的不同,烧蚀激光脉冲能量约为7μJ时记录到最佳离子信号产率。在更高的激光脉冲能量下,观察到这些离子有相当程度的碎片化。PI激光脉冲能量对这些物种的离子信号没有任何影响。为了使所有分析物物种的离子产率达到最佳,烧蚀激光脉冲能量约为7μJ且PI激光脉冲能量约为160μJ时可获得最佳结果。我们全面的数据集为MALDI-2过程背后的机制提供了有价值的见解,并有助于进一步优化这一新兴技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验