School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.
Mass Spectrom Rev. 2024 Mar-Apr;43(2):235-268. doi: 10.1002/mas.21804. Epub 2022 Sep 6.
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
质谱(MS)已成为癌症研究的核心技术。它能够分析复杂生物基质中的各种类型的生物分子,非常适合理解与疾病进展相关的生化变化。不同的生物样本,包括血清、尿液、唾液和组织,都已经成功地使用质谱进行了分析。特别是,使用 MS 成像(MSI)的空间代谢组学允许直接观察组织中代谢物的分布,从而能够深入了解特定结构中与癌症相关的生化变化。近年来,MSI 研究越来越多地用于揭示与癌症发展相关的代谢重编程,从而发现具有癌症诊断潜力的关键生物标志物。在这篇综述中,我们旨在为非专业人士涵盖 MSI 实验的基本原理,包括基本原理、样品制备过程、所使用的质谱技术的演变以及数据分析策略。我们还回顾了过去 5 年与癌症研究相关的 MSI 进展,包括空间脂质组学和糖组学、三维和多模态成像 MSI 方法的采用以及人工智能/机器学习在基于 MSI 的癌症研究中的应用。MSI 在临床研究和单细胞代谢组学中的应用也将进行讨论。关于其他小分子代谢物(如氨基酸、多胺和核苷酸/核苷)的空间分辨研究将不在讨论范围内。