Suppr超能文献

质谱成像技术在空间癌症代谢组学中的进展。

Advances in mass spectrometry imaging for spatial cancer metabolomics.

机构信息

School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.

出版信息

Mass Spectrom Rev. 2024 Mar-Apr;43(2):235-268. doi: 10.1002/mas.21804. Epub 2022 Sep 6.

Abstract

Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.

摘要

质谱(MS)已成为癌症研究的核心技术。它能够分析复杂生物基质中的各种类型的生物分子,非常适合理解与疾病进展相关的生化变化。不同的生物样本,包括血清、尿液、唾液和组织,都已经成功地使用质谱进行了分析。特别是,使用 MS 成像(MSI)的空间代谢组学允许直接观察组织中代谢物的分布,从而能够深入了解特定结构中与癌症相关的生化变化。近年来,MSI 研究越来越多地用于揭示与癌症发展相关的代谢重编程,从而发现具有癌症诊断潜力的关键生物标志物。在这篇综述中,我们旨在为非专业人士涵盖 MSI 实验的基本原理,包括基本原理、样品制备过程、所使用的质谱技术的演变以及数据分析策略。我们还回顾了过去 5 年与癌症研究相关的 MSI 进展,包括空间脂质组学和糖组学、三维和多模态成像 MSI 方法的采用以及人工智能/机器学习在基于 MSI 的癌症研究中的应用。MSI 在临床研究和单细胞代谢组学中的应用也将进行讨论。关于其他小分子代谢物(如氨基酸、多胺和核苷酸/核苷)的空间分辨研究将不在讨论范围内。

相似文献

1
Advances in mass spectrometry imaging for spatial cancer metabolomics.
Mass Spectrom Rev. 2024 Mar-Apr;43(2):235-268. doi: 10.1002/mas.21804. Epub 2022 Sep 6.
2
Spatial lipidomics and metabolomics of multicellular tumor spheroids using MALDI-2 and trapped ion mobility imaging.
Talanta. 2023 Dec 1;265:124795. doi: 10.1016/j.talanta.2023.124795. Epub 2023 Jun 20.
3
Spatial Metabolite Profiling by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging.
Adv Exp Med Biol. 2017;965:291-321. doi: 10.1007/978-3-319-47656-8_12.
4
Lipid Coverage in Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Mouse Lung Tissues.
Anal Chem. 2019 Sep 17;91(18):11629-11635. doi: 10.1021/acs.analchem.9b02045. Epub 2019 Aug 27.
7
Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ.
Curr Opin Biotechnol. 2016 Feb;37:53-60. doi: 10.1016/j.copbio.2015.10.004. Epub 2015 Nov 22.
9
Mass spectrometry-based phospholipid imaging: methods and findings.
Expert Rev Proteomics. 2020 Nov-Dec;17(11-12):843-854. doi: 10.1080/14789450.2020.1880897. Epub 2021 Feb 8.
10
Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis.
Anal Bioanal Chem. 2023 Jul;415(18):4125-4145. doi: 10.1007/s00216-023-04783-8. Epub 2023 Jun 17.

引用本文的文献

2
Glycosylation in kidney diseases.
Precis Clin Med. 2025 Jul 11;8(3):pbaf017. doi: 10.1093/pcmedi/pbaf017. eCollection 2025 Sep.
6
Advances in mass spectrometry of lipids for the investigation of Niemann-pick type C disease.
Lipids Health Dis. 2025 Jul 30;24(1):254. doi: 10.1186/s12944-025-02675-7.
7
A comprehensive review on computational metabolomics: Advancing multiscale analysis through approaches.
Comput Struct Biotechnol J. 2025 Jul 13;27:3191-3215. doi: 10.1016/j.csbj.2025.07.016. eCollection 2025.
8
Driving innovations in cancer research through spatial metabolomics: a bibliometric review of trends and hotspot.
Front Immunol. 2025 Jun 10;16:1589943. doi: 10.3389/fimmu.2025.1589943. eCollection 2025.
9
Recent Applications of Artificial Intelligence and Related Technical Challenges in MALDI MS and MALDI-MSI: A Mini Review.
Mass Spectrom (Tokyo). 2025;14(1):A0175. doi: 10.5702/massspectrometry.A0175. Epub 2025 Jun 18.
10
Microbiome in cancer metastasis: biological insights and emerging spatial omics methods.
Front Cell Infect Microbiol. 2025 Jun 4;15:1559870. doi: 10.3389/fcimb.2025.1559870. eCollection 2025.

本文引用的文献

1
Space- and Time-Resolved Metabolomics of a High-Grade Serous Ovarian Cancer Mouse Model.
Cancers (Basel). 2022 Apr 30;14(9):2262. doi: 10.3390/cancers14092262.
3
'On the Spot' Digital Pathology of Breast Cancer Based on Single-Cell Mass Spectrometry Imaging.
Anal Chem. 2022 Apr 26;94(16):6180-6190. doi: 10.1021/acs.analchem.1c05238. Epub 2022 Apr 12.
5
Elemental Mapping of Human Malignant Mesothelioma Tissue Samples Using High-Speed LA-ICP-TOFMS Imaging.
Anal Chem. 2022 Feb 8;94(5):2597-2606. doi: 10.1021/acs.analchem.1c04857. Epub 2022 Jan 24.
8
Method To Visualize the Intratumor Distribution and Impact of Gemcitabine in Pancreatic Ductal Adenocarcinoma by Multimodal Imaging.
Anal Chem. 2022 Jan 25;94(3):1795-1803. doi: 10.1021/acs.analchem.1c04579. Epub 2022 Jan 10.
10
Mass spectrometry imaging-based multi-modal technique: Next-generation of biochemical analysis strategy.
Innovation (Camb). 2021 Aug 12;2(4):100151. doi: 10.1016/j.xinn.2021.100151. eCollection 2021 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验