Suppr超能文献

肌肉激活的通用频谱特征和动态演变:肌肉类型和生理状态的一个标志。

Universal spectral profile and dynamic evolution of muscle activation: a hallmark of muscle type and physiological state.

作者信息

Garcia-Retortillo Sergi, Rizzo Rossella, Wang Jilin W J L, Sitges Carol, Ivanov Plamen Ch

机构信息

University School of Health and Sport, University of Girona, Salt, Spain.

Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts.

出版信息

J Appl Physiol (1985). 2020 Sep 1;129(3):419-441. doi: 10.1152/japplphysiol.00385.2020. Epub 2020 Jul 16.

Abstract

The skeletal muscle is an integrated multicomponent system with complex dynamics of continuous myoelectrical activation of various muscle types across time scales to facilitate muscle coordination among units and adaptation to physiological states. To understand the multiscale dynamics of neuromuscular activity, we investigated spectral characteristics of different muscle types across time scales and their evolution with physiological states. We hypothesized that each muscle type is characterized by a specific spectral profile, reflecting muscle composition and function, that remains invariant over time scales and is universal across subjects. Furthermore, we hypothesized that the myoelectrical activation and corresponding spectral profile during certain movements exhibit an evolution path in time that is unique for each muscle type and reflects responses in muscle dynamics to exercise, fatigue, and aging. To probe the multiscale mechanism of neuromuscular regulation, we developed a novel protocol of repeated squat exercise segments, each performed until exhaustion, and we analyzed differentiated spectral power responses over a range of frequency bands for leg and back muscle activation in young and old subjects. We found that leg and back muscle activation is characterized by muscle-specific spectral profiles, with differentiated frequency band contribution, and a muscle-specific evolution path in response to fatigue and aging that is universal across subjects in each age group. The uncovered universality among subjects in the spectral profile of each muscle at a given physiological state, as well as the robustness in the evolution of these profiles over a range of time scales and states, reveals a previously unrecognized multiscale mechanism underlying the differentiated response of distinct muscle types to exercise-induced fatigue and aging. To understand coordinated function of distinct fibers in a muscle, we investigated spectral dynamics of muscle activation during maximal exercise across a range of frequency bands and time scales of observation. We discovered a spectral profile that is specific for each muscle type, robust at short, intermediate, and large time scales, universal across subjects, and characterized by a muscle-specific evolution path with accumulation of fatigue and aging, indicating a previously unrecognized multiscale mechanism of muscle tone regulation.

摘要

骨骼肌是一个整合的多组分系统,具有复杂的动力学特性,在不同时间尺度上各种肌肉类型持续进行肌电激活,以促进各单元间的肌肉协调并适应生理状态。为了解神经肌肉活动的多尺度动力学,我们研究了不同肌肉类型在不同时间尺度上的频谱特征及其随生理状态的演变。我们假设每种肌肉类型都具有特定的频谱特征,反映肌肉组成和功能,该特征在时间尺度上保持不变且在个体间具有普遍性。此外,我们假设在特定运动过程中的肌电激活及相应频谱特征在时间上呈现出一条对每种肌肉类型而言独特的演变路径,反映了肌肉动力学对运动、疲劳和衰老的反应。为探究神经肌肉调节的多尺度机制,我们制定了一种新颖的重复深蹲运动方案,每个运动段持续至力竭,然后分析了年轻和老年受试者腿部和背部肌肉激活在一系列频带内的差异频谱功率响应。我们发现腿部和背部肌肉激活具有肌肉特异性的频谱特征,频带贡献不同,且在应对疲劳和衰老时具有肌肉特异性的演变路径,这在每个年龄组的个体间具有普遍性。在给定生理状态下每种肌肉频谱特征在个体间呈现出的普遍性,以及这些特征在一系列时间尺度和状态下演变的稳健性,揭示了一种先前未被认识到的多尺度机制,该机制是不同肌肉类型对运动诱导的疲劳和衰老产生差异反应的基础。为了解肌肉中不同纤维的协同功能,我们研究了在最大运动过程中一系列观察频带和时间尺度上肌肉激活的频谱动力学。我们发现了一种对每种肌肉类型而言都具有特异性的频谱特征,在短、中、大时间尺度上都很稳健,在个体间具有普遍性,且具有随着疲劳和衰老积累而呈现出的肌肉特异性演变路径,这表明存在一种先前未被认识到的肌肉张力调节多尺度机制。

相似文献

2
Assessment of muscle fatigue during biking.骑行过程中肌肉疲劳的评估。
IEEE Trans Neural Syst Rehabil Eng. 2003 Mar;11(1):17-23. doi: 10.1109/TNSRE.2003.810425.

引用本文的文献

2
Age-related breakdown in networks of inter-muscular coordination.与年龄相关的肌肉间协调网络的衰退。
Geroscience. 2025 Apr;47(2):1615-1639. doi: 10.1007/s11357-024-01331-9. Epub 2024 Sep 17.
5
Case report: Cortico-ocular interaction networks in NBA2K.病例报告:NBA2K中的皮质-眼动交互网络。
Front Netw Physiol. 2023 Apr 11;3:1151832. doi: 10.3389/fnetp.2023.1151832. eCollection 2023.
7
Inter-muscular networks of synchronous muscle fiber activation.同步肌纤维激活的肌间网络。
Front Netw Physiol. 2022 Nov 14;2:1059793. doi: 10.3389/fnetp.2022.1059793. eCollection 2022.

本文引用的文献

8
Evaluating movement performance: What you see isn't necessarily what you get.评估运动表现:眼见不一定为实。
Hum Mov Sci. 2019 Apr;64:67-74. doi: 10.1016/j.humov.2019.01.003. Epub 2019 Jan 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验