Suppr超能文献

用于增强遗传编程在符号回归中泛化能力的 Rademacher 复杂度。

Rademacher Complexity for Enhancing the Generalization of Genetic Programming for Symbolic Regression.

出版信息

IEEE Trans Cybern. 2022 Apr;52(4):2382-2395. doi: 10.1109/TCYB.2020.3004361. Epub 2022 Apr 5.

Abstract

Model complexity has a close relationship with the generalization ability and the interpretability of the learned models. Simple models are more likely to generalize well and easy to interpret. However, too much emphasis on minimizing complexity can prevent the discovery of more complex yet more accurate solutions. Genetic programming (GP) has a trend of generating overcomplex models that are difficult to interpret while not being able to generalize well. This work proposes a novel complexity measure based on the Rademacher complexity for GP for symbolic regression. The complexity of an evolved model is measured by the maximum correlation between the model and the Rademacher variables on the selected training instances. Taking minimizing the training error and the Rademacher complexity of the models as the two objectives, the proposed GP method has shown to be much superior to the standard GP on generalization performance. Compared with GP equipped with two state-of-the-art complexity measures, the proposed method still has a notable advance on generating a better front consisting of individuals with lower generalization errors and being simpler in the behavioral complexity. Further analyses reveal that compared with the state-of-the-art methods, the proposed GP method evolves models that are much closer to the target models in the model structure, and have better interpretability.

摘要

模型复杂度与学习模型的泛化能力和可解释性密切相关。简单的模型更容易很好地泛化,也更容易解释。然而,过于强调最小化复杂度可能会阻止发现更复杂但更准确的解决方案。遗传编程(GP)有生成难以解释且难以很好地泛化的过度复杂模型的趋势。这项工作为符号回归的 GP 提出了一种基于 Rademacher 复杂度的新复杂度度量。通过在选定的训练实例上测量模型与 Rademacher 变量之间的最大相关性,来衡量进化模型的复杂度。将最小化训练误差和模型的 Rademacher 复杂度作为两个目标,所提出的 GP 方法在泛化性能方面明显优于标准 GP。与配备两种最先进复杂度度量的 GP 相比,所提出的方法在生成更好的前端方面仍然具有显著的优势,该前端由具有更低泛化误差且行为复杂度更低的个体组成。进一步的分析表明,与最先进的方法相比,所提出的 GP 方法进化出的模型在模型结构上更接近目标模型,并且具有更好的可解释性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验