Suppr超能文献

利用谷歌趋势和阿根廷流感数据预测韩国 2 周和 30 周后的季节性流感样疾病。

Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina.

机构信息

Department of Data-centric Problem Solving Research, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea.

Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.

出版信息

PLoS One. 2020 Jul 16;15(7):e0233855. doi: 10.1371/journal.pone.0233855. eCollection 2020.

Abstract

We aimed to identify variables for forecasting seasonal and short-term targets for influenza-like illness (ILI) in South Korea, and other input variables through weekly time-series of the variables. We also aimed to suggest prediction models for ILI activity using a seasonal autoregressive integrated moving average, including exogenous variables (SARIMAX) models. We collected ILI, FluNet surveillance data, Google Trends (GT), weather, and air-pollution data from 2010 to 2019, applying cross-correlation analysis to identify the time lag between the two respective time-series. The relationship between ILI in South Korea and the input variables were evaluated with Linear regression models. To validate selected input variables, the autoregressive moving average, including exogenous variables (ARMAX) models were used to forecast seasonal ILI after 2 and 30 weeks with a three-year window for the training set used in the fixed rolling window analysis. Moreover, a final SARIMAX model was constructed. Influenza A virus activity peaks in South Korea were roughly divided between the 51st and the 7th week, while those of influenza B were divided between the 3rd and 14th week. GT showed the highest correlation coefficient with forecasts from a week ahead, and seasonal influenza outbreak patterns in Argentina showed a high correlation with those 30 weeks ahead in South Korea. The prediction models after 2 and 30 weeks using ARMAX models had R2 values of 0.789 and 0.621, respectively, indicating that reference models using only the previous seasonal ILI could be improved. The currently eligible input variables selected by the cross-correlation analysis helped propose short-term and long-term predictions for ILI in Korea. Our findings indicate that influenza surveillance in Argentina can help predict seasonal ILI patterns after 30 weeks in South Korea, and these can help the Korea Centers for Disease Control and Prevention determine vaccine strategies for the next ILI season.

摘要

我们旨在确定变量,以预测韩国流感样疾病(ILI)的季节性和短期目标,并通过每周时间序列的变量来确定其他输入变量。我们还旨在通过包括外生变量的季节性自回归综合移动平均(SARIMAX)模型,提出ILI 活动的预测模型。我们收集了 2010 年至 2019 年的 ILI、FluNet 监测数据、Google Trends(GT)、天气和空气污染数据,并应用交叉相关分析来确定两个时间序列之间的时间滞后。用线性回归模型评估韩国 ILI 与输入变量之间的关系。为了验证选定的输入变量,使用自回归移动平均,包括外生变量(ARMAX)模型,以在三年的训练集窗口内,对季节性 ILI 进行 2 周和 30 周的预测,并在固定滚动窗口分析中使用。此外,构建了最终的 SARIMAX 模型。韩国甲型流感病毒活动高峰期大致在第 51 周到第 7 周之间,而乙型流感病毒活动高峰期则在第 3 周到第 14 周之间。GT 与未来一周的预测结果相关性最高,阿根廷的季节性流感爆发模式与韩国未来 30 周的模式高度相关。使用 ARMAX 模型的 2 周和 30 周的预测模型的 R2 值分别为 0.789 和 0.621,这表明仅使用前季节性 ILI 的参考模型可以得到改进。交叉相关分析选择的当前合格输入变量有助于对韩国的 ILI 提出短期和长期预测。我们的研究结果表明,阿根廷的流感监测可以帮助预测韩国未来 30 周的季节性 ILI 模式,这有助于韩国疾病控制和预防中心确定下一个 ILI 季节的疫苗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3d/7365353/46d68ecbe177/pone.0233855.g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验