Suppr超能文献

使用 RGB-D 传感器通过面部表情和身体姿势进行情感识别,实现自适应用户界面设计和分析。

Adaptive user interface design and analysis using emotion recognition through facial expressions and body posture from an RGB-D sensor.

机构信息

Department of Computer Science, University of Sharjah, Sharjah, UAE.

出版信息

PLoS One. 2020 Jul 16;15(7):e0235908. doi: 10.1371/journal.pone.0235908. eCollection 2020.

Abstract

This work presents the design and analysis of an Adaptive User Interface (AUI) for a desktop application that uses a novel solution for the recognition of the emotional state of a user through both facial expressions and body posture from an RGB-D sensor. Six basic emotions are recognized through facial expressions in addition to the physiological state, which is recognized through the body posture. The facial expressions and body posture are acquired in real-time from a Kinect sensor. A scoring system is used to improve recognition by minimizing the confusion between the different emotions. The implemented solution achieves an accuracy rate of above 90%. The recognized emotion is then used to derive an Automatic AUI where the user can use speech commands to modify the User Interface (UI) automatically. A comprehensive user study is performed to compare the usability of an Automatic, Manual, and a Hybrid AUI. The AUIs are evaluated in terms of their efficiency, effectiveness, productivity, and error safety. Additionally, a comprehensive analysis is performed to evaluate the results from the viewpoint of different genders and age groups. Results show that the hybrid adaptation improves usability in terms of productivity and efficiency. Finally, a combination of both automatic and hybrid AUIs result in significantly positive user experience compared to the manual adaptation.

摘要

这项工作提出了一个桌面应用程序的自适应用户界面(AUI)的设计和分析,该界面通过 RGB-D 传感器同时使用面部表情和身体姿势识别用户的情绪状态的新方法。除了通过身体姿势识别的生理状态外,还通过面部表情识别出六种基本情绪。面部表情和身体姿势是从 Kinect 传感器实时获取的。使用评分系统通过最小化不同情绪之间的混淆来提高识别准确性。所实现的解决方案的识别准确率超过 90%。然后,使用识别出的情绪来衍生出自动 AUI,用户可以使用语音命令自动修改用户界面(UI)。进行了全面的用户研究,比较了自动、手动和混合 AUI 的可用性。根据效率、有效性、生产力和错误安全性对 AUIs 进行评估。此外,还从不同性别和年龄组的角度进行了全面的分析来评估结果。结果表明,混合自适应在生产力和效率方面提高了可用性。最后,与手动自适应相比,自动和混合自适应的组合使用显著提高了用户体验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验