Suppr超能文献

基于骨骼运动的情感识别

Emotion Recognition from Skeletal Movements.

作者信息

Sapiński Tomasz, Kamińska Dorota, Pelikant Adam, Anbarjafari Gholamreza

机构信息

Institute of Mechatronics and Information Systems Lodz University of Technology, 90-924 Lodz, Poland.

iCV Lab, Institute of Technology, University of Tartu, 51014 Tartu, Estonia.

出版信息

Entropy (Basel). 2019 Jun 29;21(7):646. doi: 10.3390/e21070646.

Abstract

Automatic emotion recognition has become an important trend in many artificial intelligence (AI) based applications and has been widely explored in recent years. Most research in the area of automated emotion recognition is based on facial expressions or speech signals. Although the influence of the emotional state on body movements is undeniable, this source of expression is still underestimated in automatic analysis. In this paper, we propose a novel method to recognise seven basic emotional states-namely, happy, sad, surprise, fear, anger, disgust and neutral-utilising body movement. We analyse motion capture data under seven basic emotional states recorded by professional actor/actresses using Microsoft Kinect v2 sensor. We propose a new representation of affective movements, based on sequences of body joints. The proposed algorithm creates a sequential model of affective movement based on low level features inferred from the spacial location and the orientation of joints within the tracked skeleton. In the experimental results, different deep neural networks were employed and compared to recognise the emotional state of the acquired motion sequences. The experimental results conducted in this work show the feasibility of automatic emotion recognition from sequences of body gestures, which can serve as an additional source of information in multimodal emotion recognition.

摘要

自动情感识别已成为许多基于人工智能(AI)的应用中的一个重要趋势,并且近年来已得到广泛探索。自动情感识别领域的大多数研究基于面部表情或语音信号。尽管情绪状态对身体动作的影响是不可否认的,但在自动分析中,这种表达来源仍然被低估。在本文中,我们提出了一种新颖的方法,利用身体动作来识别七种基本情绪状态,即快乐、悲伤、惊讶、恐惧、愤怒、厌恶和中性。我们分析了专业演员使用微软Kinect v2传感器记录的七种基本情绪状态下的动作捕捉数据。我们基于身体关节序列提出了一种新的情感动作表示方法。所提出的算法基于从跟踪骨架内关节的空间位置和方向推断出的低级特征,创建了情感动作的序列模型。在实验结果中,使用并比较了不同的深度神经网络来识别所获取运动序列的情绪状态。这项工作的实验结果表明,从身体手势序列中自动进行情感识别是可行的,这可以作为多模态情感识别中的一个额外信息来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed4b/7515139/b40cc3a80c27/entropy-21-00646-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验