Suppr超能文献

RAHM:用于合理药物库存的关系增强分层多任务学习框架。

RAHM: Relation augmented hierarchical multi-task learning framework for reasonable medication stocking.

机构信息

School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.

International Business College, Dongbei University of Finance and Economics, Dalian 116025, China.

出版信息

J Biomed Inform. 2020 Aug;108:103502. doi: 10.1016/j.jbi.2020.103502. Epub 2020 Jul 14.

Abstract

As an important task in digital preventive healthcare management, especially in the secondary prevention stage, active medication stocking refers to the process of preparing necessary medications in advance according to the predicted disease progression of patients. However, predicting preventive or even life-saving medicine for each patient is a non-trivial task. Existing models usually overlook the implicit hierarchical relation between patient's predicted diseases and medications, and mainly focus on single tasks (medication recommendation or disease prediction). To tackle this limitation, we propose a relation augmented hierarchical multi-task learning framework, named RAHM. which is capable of learning multi-level relation-aware patient representation for reasonable medication stocking. Specifically, the framework first leverages the underlying structural relations of Electronic Health Record (EHR) data to learn the low-level patient visit representation. Then, it uses a regular LSTM to encode the historical temporal disease information for disease-level patient representation learning. Further, a relation-aware LSTM (R-LSTM) is proposed to handle the relations between diseases and medication in longitudinal patient records, which can better integrate the historical information into the medication-level patient representation. In the learning process, two pseudo residual structures are introduced to mitigate the error propagation and preserve the valuable relation information of EHRs. To validate our method, extensive experiments have been conducted based on the real-world clinical dataset. The results demonstrate a consistent superiority of our framework over several baselines in suggesting reasonable stock medication.

摘要

作为数字预防保健管理中的一项重要任务,主动药物储备是指根据患者的疾病进展预测,提前准备必要药物的过程。然而,为每个患者预测预防性甚至救命药物是一项艰巨的任务。现有的模型通常忽略了患者预测疾病和药物之间隐含的层次关系,主要关注单一任务(药物推荐或疾病预测)。为了解决这个局限性,我们提出了一个关系增强的层次多任务学习框架,称为 RAHM。该框架能够学习多级别关系感知的患者表示,以进行合理的药物储备。具体来说,该框架首先利用电子病历 (EHR) 数据的底层结构关系来学习低级别患者就诊表示。然后,它使用常规 LSTM 对历史时间疾病信息进行编码,以进行疾病级别的患者表示学习。进一步,提出了一种关系感知的 LSTM (R-LSTM) 来处理纵向患者记录中疾病和药物之间的关系,从而更好地将历史信息整合到药物级别患者表示中。在学习过程中,引入了两个伪残差结构来减轻误差传播并保留 EHR 的有价值关系信息。为了验证我们的方法,我们基于真实的临床数据集进行了广泛的实验。结果表明,我们的框架在合理建议储备药物方面明显优于几个基线。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验