Suppr超能文献

通过适应相似任务进行多任务学习,预测多种罕见病的死亡率。

Multi-task Learning via Adaptation to Similar Tasks for Mortality Prediction of Diverse Rare Diseases.

机构信息

Department of Computer Science, Peking University, Beijing, China.

出版信息

AMIA Annu Symp Proc. 2021 Jan 25;2020:763-772. eCollection 2020.

Abstract

The mortality prediction of diverse rare diseases using electronic health record (EHR) data is a crucial task for intelligent healthcare. However, data insufficiency and the clinical diversity of rare diseases make it hard for deep learning models to be trained. Mortality prediction for these patients with different diseases can be viewed as a multi-task learning problem with insufficient data but a large number of tasks. On the other hand, insufficient training data makes it difficult to train task-specific modules in multi-task learning models. To address the challenges of data insufficiency and task diversity, we propose an initialization-sharing multi-task learning method (Ada-SiT). Ada-Sit can learn the parameter initialization and dynamically measure the tasks' similarities, used for fast adaptation. We use Ada-SiT to train long short-term memory networks (LSTM) based prediction models on longitudinal EHR data. The experimental results demonstrate that the proposed model is effective for mortality prediction of diverse rare diseases.

摘要

利用电子健康记录 (EHR) 数据预测多种罕见病的死亡率是智能医疗保健的一项关键任务。然而,数据不足和罕见病的临床多样性使得深度学习模型难以训练。对于这些患有不同疾病的患者,死亡率预测可以视为一个具有大量任务但数据不足的多任务学习问题。另一方面,训练数据不足使得在多任务学习模型中训练特定任务的模块变得困难。为了解决数据不足和任务多样性的挑战,我们提出了一种初始化共享多任务学习方法(Ada-SiT)。Ada-SiT 可以学习参数初始化并动态测量任务的相似度,用于快速适应。我们使用 Ada-SiT 在纵向 EHR 数据上训练基于长短期记忆网络 (LSTM) 的预测模型。实验结果表明,所提出的模型对于多种罕见病的死亡率预测是有效的。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验