Huston Nicholas C, Wan Han, de Cesaris Araujo Tavares Rafael, Wilen Craig, Pyle Anna Marie
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
bioRxiv. 2020 Jul 10:2020.07.10.197079. doi: 10.1101/2020.07.10.197079.
SARS-CoV-2 is the positive-sense RNA virus that causes COVID-19, a disease that has triggered a major human health and economic crisis. The genome of SARS-CoV-2 is unique among viral RNAs in its vast potential to form stable RNA structures and yet, as much as 97% of its 30 kilobases have not been structurally explored in the context of a viral infection. Our limited knowledge of SARS-CoV-2 genomic architecture is a fundamental limitation to both our mechanistic understanding of coronavirus life cycle and the development of COVID-19 RNA-based therapeutics. Here, we apply a novel long amplicon strategy to determine for the first time the secondary structure of the SARS-CoV-2 RNA genome probed in infected cells. In addition to the conserved structural motifs at the viral termini, we report new structural features like a conformationally flexible programmed ribosomal frameshifting pseudoknot, and a host of novel RNA structures, each of which highlights the importance of studying viral structures in their native genomic context. Our in-depth structural analysis reveals extensive networks of well-folded RNA structures throughout Orf1ab and reveals new aspects of SARS-CoV-2 genome architecture that distinguish it from other single-stranded, positive-sense RNA viruses. Evolutionary analysis of RNA structures in SARS-CoV-2 shows that several features of its genomic structure are conserved across beta coronaviruses and we pinpoint individual regions of well-folded RNA structure that merit downstream functional analysis. The native, complete secondary structure of SAR-CoV-2 presented here is a roadmap that will facilitate focused studies on mechanisms of replication, translation and packaging, and guide the identification of new RNA drug targets against COVID-19.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是一种正义RNA病毒,可引起2019冠状病毒病(COVID-19),该疾病引发了重大的人类健康和经济危机。SARS-CoV-2的基因组在病毒RNA中独具特色,具有形成稳定RNA结构的巨大潜力,然而,在病毒感染的背景下,其30千碱基中多达97%尚未进行结构探索。我们对SARS-CoV-2基因组结构的了解有限,这是我们对冠状病毒生命周期的机制理解以及COVID-19基于RNA的疗法开发的一个基本限制。在这里,我们应用一种新颖的长扩增子策略,首次确定在感染细胞中探测到的SARS-CoV-2 RNA基因组的二级结构。除了病毒末端保守的结构基序外,我们还报告了新的结构特征,如构象灵活的程序性核糖体移码假结,以及一系列新颖的RNA结构,每一个都突出了在其天然基因组背景下研究病毒结构的重要性。我们的深入结构分析揭示了整个开放阅读框1ab(Orf1ab)中广泛的折叠良好的RNA结构网络,并揭示了SARS-CoV-2基因组结构不同于其他单链正义RNA病毒的新方面。对SARS-CoV-2 RNA结构的进化分析表明,其基因组结构的几个特征在β冠状病毒中是保守的,我们确定了折叠良好的RNA结构的各个区域,值得进行下游功能分析。这里展示的SARS-CoV-2的天然完整二级结构是一个路线图,将有助于聚焦于复制、翻译和包装机制的研究,并指导针对COVID-19的新RNA药物靶点的鉴定。