Suppr超能文献

在疫苗临床试验中建立适应性反应模式。

Modeling adaptive response profiles in a vaccine clinical trial.

机构信息

Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Biosystems Data Analysis Group, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

BMC Med Res Methodol. 2020 Jul 16;20(1):191. doi: 10.1186/s12874-020-01070-3.

Abstract

BACKGROUND

Vaccine clinical studies typically provide time-resolved data on adaptive response read-outs in response to the administration of that particular vaccine to a cohort of individuals. However, modeling such data is challenged by the properties of these time-resolved profiles such as non-linearity, scarcity of measurement points, scheduling of the vaccine at multiple time points. Linear Mixed Models (LMM) are often used for the analysis of longitudinal data but their use in these time-resolved immunological data is not common yet. Apart from the modeling challenges mentioned earlier, selection of the optimal model by using information-criterion-based measures is far from being straight-forward. The aim of this study is to provide guidelines for the application and selection of LMMs that deal with the challenging characteristics of the typical data sets in the field of vaccine clinical studies.

METHODS

We used antibody measurements in response to Hepatitis-B vaccine with five different adjuvant formulations for demonstration purposes. We built piecewise-linear, piecewise-quadratic and cubic models with transformations of the axes with pre-selected or optimized knot locations where time is a numerical variable. We also investigated models where time is categorical and random effects are shared intercepts between different measurement points. We compared all models by using Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Deviance Information Criterion (DIC), variations of conditional AIC and by visual inspection of the model fit in the light of prior biological information.

RESULTS

There are various ways of dealing with the challenges of the data which have their own advantages and disadvantages. We explain these in detail here. Traditional information-criteria-based measures work well for the coarse selection of the model structure and complexity, however are not efficient at fine tuning of the complexity level of the random effects.

CONCLUSIONS

We show that common statistical measures for optimal model complexity are not sufficient. Rather, explicitly accounting for model purpose and biological interpretation is needed to arrive at relevant models.

TRIAL REGISTRATION

Clinical trial registration number for this study: NCT00805389, date of registration: December 9, 2008 (pro-active registration).

摘要

背景

疫苗临床研究通常提供关于个体接种特定疫苗后适应性反应读数的时间分辨数据。然而,由于这些时间分辨谱的特性,如非线性、测量点稀缺、疫苗在多个时间点的安排,对这些数据进行建模具有挑战性。线性混合模型(LMM)常用于分析纵向数据,但在这些时间分辨免疫数据中的应用尚不多见。除了前面提到的建模挑战外,使用基于信息准则的度量标准选择最佳模型远非直截了当。本研究的目的是为处理疫苗临床研究领域中典型数据集的挑战性特征的 LMM 的应用和选择提供指导。

方法

我们使用了五组不同佐剂配方的乙型肝炎疫苗的抗体测量数据来进行演示。我们构建了分段线性、分段二次和三次模型,并对坐标轴进行了转换,其中时间是数值变量,且预先选择或优化了节点位置。我们还研究了时间是分类变量且不同测量点之间的随机效应是共享截距的模型。我们使用赤池信息量准则(AIC)、贝叶斯信息量准则(BIC)、离差信息量准则(DIC)、条件 AIC 的变化以及根据先验生物学信息对模型拟合的直观检查来比较所有模型。

结果

有多种方法可以处理数据的挑战,每种方法都有其自身的优点和缺点。我们在这里详细解释了这些方法。传统的基于信息准则的度量标准对于模型结构和复杂性的粗选效果很好,但对于随机效应的复杂性水平的微调效果不佳。

结论

我们表明,常见的最优模型复杂度统计度量标准是不够的。相反,需要明确考虑模型目的和生物学解释,才能得出相关模型。

试验注册

本研究的临床试验注册号为 NCT00805389,注册日期为 2008 年 12 月 9 日(主动注册)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4594/7364493/0d777550bed1/12874_2020_1070_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验