Suppr超能文献

医疗保健中的人工智能:使用统计、神经和集成架构的时间序列预测

AI in Healthcare: Time-Series Forecasting Using Statistical, Neural, and Ensemble Architectures.

作者信息

Kaushik Shruti, Choudhury Abhinav, Sheron Pankaj Kumar, Dasgupta Nataraj, Natarajan Sayee, Pickett Larry A, Dutt Varun

机构信息

Applied Cognitive Science Laboratory, Indian Institute of Technology Mandi, Mandi, India.

RxDataScience, Inc., Durham, NC, United States.

出版信息

Front Big Data. 2020 Mar 19;3:4. doi: 10.3389/fdata.2020.00004. eCollection 2020.

Abstract

Both statistical and neural methods have been proposed in the literature to predict healthcare expenditures. However, less attention has been given to comparing predictions from both these methods as well as ensemble approaches in the healthcare domain. The primary objective of this paper was to evaluate different statistical, neural, and ensemble techniques in their ability to predict patients' weekly average expenditures on certain pain medications. Two statistical models, persistence (baseline) and autoregressive integrated moving average (ARIMA), a multilayer perceptron (MLP) model, a long short-term memory (LSTM) model, and an ensemble model combining predictions of the ARIMA, MLP, and LSTM models were calibrated to predict the expenditures on two different pain medications. In the MLP and LSTM models, we compared the influence of shuffling of training data and dropout of certain nodes in MLPs and nodes and recurrent connections in LSTMs in layers during training. Results revealed that the ensemble model outperformed the persistence, ARIMA, MLP, and LSTM models across both pain medications. In general, not shuffling the training data and adding the dropout helped the MLP models and shuffling the training data and not adding the dropout helped the LSTM models across both medications. We highlight the implications of using statistical, neural, and ensemble methods for time-series forecasting of outcomes in the healthcare domain.

摘要

文献中已经提出了统计方法和神经方法来预测医疗保健支出。然而,在医疗保健领域,对比较这两种方法以及集成方法的预测结果关注较少。本文的主要目的是评估不同的统计、神经和集成技术预测患者每周在某些止痛药上的平均支出的能力。校准了两种统计模型,即持续性(基线)模型和自回归积分移动平均(ARIMA)模型、一个多层感知器(MLP)模型、一个长短期记忆(LSTM)模型,以及一个结合了ARIMA、MLP和LSTM模型预测结果的集成模型,以预测两种不同止痛药的支出。在MLP和LSTM模型中,我们比较了训练数据洗牌以及在训练过程中MLP中的某些节点、LSTM中的节点和循环连接的随机失活对模型的影响。结果表明,在两种止痛药上,集成模型的表现均优于持续性模型、ARIMA模型、MLP模型和LSTM模型。总体而言,不打乱训练数据并添加随机失活对两种药物的MLP模型有帮助,而打乱训练数据且不添加随机失活对两种药物的LSTM模型有帮助。我们强调了使用统计、神经和集成方法对医疗保健领域结果进行时间序列预测的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/195c/7931939/b5299f34f361/fdata-03-00004-g0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验