Suppr超能文献

先知预测模型:一种用于预测韩国首尔空气污染物(颗粒物、细颗粒物、臭氧、一氧化氮、二氧化硫、一氧化碳)浓度的机器学习方法。

Prophet forecasting model: a machine learning approach to predict the concentration of air pollutants (PM, PM, O, NO, SO, CO) in Seoul, South Korea.

作者信息

Shen Justin, Valagolam Davesh, McCalla Serena

机构信息

Department of Science Research, Jericho Senior High School, Jericho, NY, United States of America.

出版信息

PeerJ. 2020 Sep 15;8:e9961. doi: 10.7717/peerj.9961. eCollection 2020.

Abstract

Amidst recent industrialization in South Korea, Seoul has experienced high levels of air pollution, an issue that is magnified due to a lack of effective air pollution prediction techniques. In this study, the Prophet forecasting model (PFM) was used to predict both short-term and long-term air pollution in Seoul. The air pollutants forecasted in this study were PM, PM, O, NO, SO, and CO, air pollutants responsible for numerous health conditions upon long-term exposure. Current chemical models to predict air pollution require complex source lists making them difficult to use. Machine learning models have also been implemented however their requirement of meteorological parameters render the models ineffective as additional models and infrastructure need to be in place to model meteorology. To address this, a model needs to be created that can accurately predict pollution based on time. A dataset containing three years worth of hourly air quality measurements in Seoul was sourced from the Seoul Open Data Plaza. To optimize the model, PFM has the following parameters: model type, changepoints, seasonality, holidays, and error. Cross validation was performed on the 2017-18 data; then, the model predicted 2019 values. To compare the predicted and actual values and determine the accuracy of the model, the statistical indicators: mean squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE), and coverage were used. PFM predicted PM and PM with a MAE value of 12.6 µg/m and 19.6 µg/m, respectively. PFM also predicted SO and CO with a MAE value of 0.00124 ppm and 0.207 ppm, respectively. PFM's prediction of PM and PM had a MAE approximately 2 times and 4 times less, respectively, than comparable models. PFM's prediction of SOand CO had a MAE approximately five times and 50 times less, respectively, than comparable models. In most cases, PFM's ability to accurately forecast the concentration of air pollutants in Seoul up to one year in advance outperformed similar models proposed in literature. This study addresses the limitations of the prior two PFM studies by expanding the modelled air pollutants from three pollutants to six pollutants while increasing the prediction time from 3 days to 1 year. This is also the first research to use PFM in Seoul, Korea. To achieve more accurate results, a larger air pollution dataset needs to be implemented with PFM. In the future, PFM should be used to predict and model air pollution in other regions, especially those without advanced infrastructure to model meteorology alongside air pollution. In Seoul, Seoul's government can use PFM to accurately predict air pollution concentrations and plan accordingly.

摘要

在韩国近期的工业化进程中,首尔经历了高水平的空气污染,由于缺乏有效的空气污染预测技术,这一问题更加严重。在本研究中,使用了先知预测模型(PFM)来预测首尔的短期和长期空气污染。本研究中预测的空气污染物为PM、PM、O、NO、SO和CO,这些空气污染物长期暴露会导致多种健康问题。目前用于预测空气污染的化学模型需要复杂的源清单,使其难以使用。机器学习模型也已被应用,然而它们对气象参数的要求使得这些模型无效,因为需要额外的模型和基础设施来模拟气象。为了解决这个问题,需要创建一个能够根据时间准确预测污染的模型。一个包含首尔三年每小时空气质量测量数据的数据集来自首尔开放数据广场。为了优化模型,PFM有以下参数:模型类型、变化点、季节性、节假日和误差。对2017 - 18年的数据进行了交叉验证;然后,该模型预测了2019年的值。为了比较预测值和实际值并确定模型的准确性,使用了统计指标:均方误差(MSE)、平均绝对误差(MAE)、均方根误差(RMSE)和覆盖率。PFM预测PM和PM的MAE值分别为12.6 µg/m和19.6 µg/m。PFM还预测SO和CO的MAE值分别为0.00124 ppm和0.207 ppm。PFM对PM和PM的预测MAE分别比同类模型少约2倍和4倍。PFM对SO和CO的预测MAE分别比同类模型少约5倍和50倍。在大多数情况下,PFM提前一年准确预测首尔空气污染物浓度的能力优于文献中提出的类似模型。本研究通过将建模的空气污染物从三种扩展到六种,同时将预测时间从3天增加到1年,解决了之前两项PFM研究的局限性。这也是在韩国首尔首次使用PFM的研究。为了获得更准确的结果,需要用更大的空气污染数据集与PFM一起使用。未来,PFM应用于预测和模拟其他地区的空气污染,特别是那些没有先进基础设施来同时模拟气象和空气污染的地区。在首尔,首尔市政府可以使用PFM来准确预测空气污染浓度并据此制定计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2e1/7500321/cedecbaa30bd/peerj-08-9961-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验