Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan.
Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan.
Sci Rep. 2020 Jul 16;10(1):11714. doi: 10.1038/s41598-020-68611-0.
There is a rapidly growing demand for female animals in preclinical animal, and thus it is necessary to determine animals' estrous cycle stages from vaginal smear cytology. However, the determination of estrous stages requires extensive training, takes a long time, and is costly; moreover, the results obtained by human examiners may not be consistent. Here, we report a machine learning model trained with 2,096 microscopic images that we named the "Stage Estimator of estrous Cycle of RodEnt using an Image-recognition Technique (SECREIT)." With the test dataset (736 images), SECREIT achieved area under the receiver-operating-characteristic curve of 0.962 or more for each estrous stage. A test using 100 images showed that SECREIT provided correct classification that was similar to that provided by two human examiners (SECREIT: 91%, Human 1: 91%, Human 2: 79%) in 11 s. The SECREIT can be a first step toward accelerating the research using female rodents.
目前,临床前动物实验对雌性动物的需求迅速增长,因此有必要通过阴道抹片细胞学来确定动物的发情周期阶段。然而,发情阶段的确定需要广泛的培训,耗时较长,成本高昂;此外,人类检查者的结果可能不一致。在这里,我们报告了一个使用机器学习模型训练的 2096 张显微镜图像,我们将其命名为“使用图像识别技术评估啮齿动物发情周期阶段的模型(SECREIT)”。在测试数据集(736 张图像)中,SECREIT 在每个发情阶段的受试者工作特征曲线下面积达到 0.962 或更高。使用 100 张图像进行的测试表明,SECREIT 在 11 秒内提供的分类与两名人类检查者(SECREIT:91%,人类 1:91%,人类 2:79%)的分类相似。SECREIT 可以成为加速雌性啮齿动物研究的第一步。