Hess Berk, León Salvador, van der Vegt Nico, Kremer Kurt
Max-Planck-Institute for Polymer Research, P.O. Box 3148, D-55021, Mainz, Germany.
Soft Matter. 2006 Apr 18;2(5):409-414. doi: 10.1039/b602076c.
Based on coarse grained simulations of a specially adapted model for bisphenol-A polycarbonate (BPA-PC) we generate by inverse mapping, the reintroduction of chemical details, well equilibrated all-atom conformations and time trajectories of dense polymeric melts for up to 7.8 µs. This is several orders of magnitude more than any direct all-atom simulations have reached so far. These polymer melts contain up to 68600 atoms in = 100 chains of molecular weight = 5217. By comparison with short all-atom simulations we show that these trajectories are physically meaningful, providing us with a powerful tool to compare long time simulations to experiments, which probe specific local dynamics on long time scales, such as NMR relaxation.
基于对一种经过特殊适配的双酚A聚碳酸酯(BPA-PC)模型的粗粒度模拟,我们通过逆映射生成了化学细节的重新引入、平衡良好的全原子构象以及长达7.8微秒的致密聚合物熔体的时间轨迹。这比迄今为止任何直接的全原子模拟所达到的时间尺度高出几个数量级。这些聚合物熔体在100条分子量为5217的链中包含多达68600个原子。通过与短时间的全原子模拟进行比较,我们表明这些轨迹具有物理意义,为我们提供了一个强大的工具,用于将长时间模拟与实验进行比较,实验可探测长时间尺度上的特定局部动力学,如核磁共振弛豫。