Suppr超能文献

MSstatsTMT:在等压标记和多个混合物实验中对差异丰富蛋白质进行统计检测

MSstatsTMT: Statistical Detection of Differentially Abundant Proteins in Experiments with Isobaric Labeling and Multiple Mixtures.

作者信息

Huang Ting, Choi Meena, Tzouros Manuel, Golling Sabrina, Pandya Nikhil Janak, Banfai Balazs, Dunkley Tom, Vitek Olga

机构信息

Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA.

Roche Pharma Research and Early Development, Pharmaceutical Sciences-BiOmics and Pathology, Roche Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland.

出版信息

Mol Cell Proteomics. 2020 Oct;19(10):1706-1723. doi: 10.1074/mcp.RA120.002105. Epub 2020 Jul 17.

Abstract

Tandem mass tag (TMT) is a multiplexing technology widely-used in proteomic research. It enables relative quantification of proteins from multiple biological samples in a single MS run with high efficiency and high throughput. However, experiments often require more biological replicates or conditions than can be accommodated by a single run, and involve multiple TMT mixtures and multiple runs. Such larger-scale experiments combine sources of biological and technical variation in patterns that are complex, unique to TMT-based workflows, and challenging for the downstream statistical analysis. These patterns cannot be adequately characterized by statistical methods designed for other technologies, such as label-free proteomics or transcriptomics. This manuscript proposes a general statistical approach for relative protein quantification in MS- based experiments with TMT labeling. It is applicable to experiments with multiple conditions, multiple biological replicate runs and multiple technical replicate runs, and unbalanced designs. It is based on a flexible family of linear mixed-effects models that handle complex patterns of technical artifacts and missing values. The approach is implemented in , a freely available open-source R/Bioconductor package compatible with data processing tools such as Proteome Discoverer, MaxQuant, OpenMS, and SpectroMine. Evaluation on a controlled mixture, simulated datasets, and three biological investigations with diverse designs demonstrated that balanced the sensitivity and the specificity of detecting differentially abundant proteins, in large-scale experiments with multiple biological mixtures.

摘要

串联质谱标签(TMT)是一种在蛋白质组学研究中广泛使用的多重技术。它能够在一次质谱运行中高效、高通量地对来自多个生物样品的蛋白质进行相对定量。然而,实验通常需要的生物重复或条件数量超过一次运行所能容纳的范围,并且涉及多个TMT混合物和多次运行。这种更大规模的实验将生物和技术变异源以复杂的模式结合在一起,这些模式是基于TMT的工作流程所特有的,并且对下游统计分析具有挑战性。这些模式无法通过为其他技术(如无标记蛋白质组学或转录组学)设计的统计方法进行充分表征。本手稿提出了一种用于基于TMT标记的质谱实验中蛋白质相对定量的通用统计方法。它适用于具有多个条件、多个生物重复运行和多个技术重复运行以及不平衡设计的实验。它基于一个灵活的线性混合效应模型家族,该家族能够处理复杂的技术伪影模式和缺失值。该方法在 中实现, 是一个免费的开源R/Bioconductor软件包,与诸如Proteome Discoverer、MaxQuant、OpenMS和SpectroMine等数据处理工具兼容。在一个对照混合物、模拟数据集以及三个具有不同设计的生物学研究上的评估表明,在具有多个生物混合物的大规模实验中, 平衡了检测差异丰富蛋白质的灵敏度和特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b46b/8015007/529f4c552f5f/gr10.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验