Suppr超能文献

两种常见蛋白质定量方法的蛋白质组学全面评估。

Proteome-Wide Evaluation of Two Common Protein Quantification Methods.

机构信息

Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States.

出版信息

J Proteome Res. 2018 May 4;17(5):1934-1942. doi: 10.1021/acs.jproteome.8b00016. Epub 2018 Apr 19.

Abstract

Proteomics experiments commonly aim to estimate and detect differential abundance across all expressed proteins. Within this experimental design, some of the most challenging measurements are small fold changes for lower abundance proteins. While bottom-up proteomics methods are approaching comprehensive coverage of even complex eukaryotic proteomes, failing to reliably quantify lower abundance proteins can limit the precision and reach of experiments to much less than the identified-let alone total-proteome. Here we test the ability of two common methods, a tandem mass tagging (TMT) method and a label-free quantitation method (LFQ), to achieve comprehensive quantitative coverage by benchmarking their capacity to measure 3 different levels of change (3-, 2-, and 1.5-fold) across an entire data set. Both methods achieved comparably accurate estimates for all 3-fold-changes. However, the TMT method detected changes that reached statistical significance three times more often due to higher precision and fewer missing values. These findings highlight the importance of refining proteome quantitation methods to bring the number of usefully quantified proteins into closer agreement with the number of total quantified proteins.

摘要

蛋白质组学实验通常旨在估计和检测所有表达蛋白的差异丰度。在这种实验设计中,一些最具挑战性的测量是低丰度蛋白的小倍数变化。虽然自下而上的蛋白质组学方法正在接近甚至复杂的真核生物蛋白质组的全面覆盖,但无法可靠地定量低丰度蛋白会限制实验的精度和范围,使其远远低于已鉴定的蛋白质组,更不用说整个蛋白质组了。在这里,我们通过比较两种常见方法(串联质谱标签(TMT)方法和无标记定量方法(LFQ))在整个数据集上测量 3 种不同变化水平(3 倍、2 倍和 1.5 倍)的能力,来测试它们实现全面定量覆盖的能力。这两种方法对于所有 3 倍变化都能获得相当准确的估计。然而,由于更高的精度和更少的缺失值,TMT 方法检测到统计学显著变化的次数是 LFQ 方法的三倍。这些发现强调了改进蛋白质组定量方法的重要性,以使有用的定量蛋白数量更接近总定量蛋白数量。

相似文献

1
Proteome-Wide Evaluation of Two Common Protein Quantification Methods.两种常见蛋白质定量方法的蛋白质组学全面评估。
J Proteome Res. 2018 May 4;17(5):1934-1942. doi: 10.1021/acs.jproteome.8b00016. Epub 2018 Apr 19.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验