Department of Paediatrics, Minoh City Hospital, 5-7-1 Kayano, Minoh, Osaka, 562-0014, Japan.
Sci Rep. 2020 Jul 17;10(1):11868. doi: 10.1038/s41598-020-68657-0.
A new method to predict coronary artery lesions (CALs) in Kawasaki disease (KD) was developed using a mean structure equation model (SEM) and neural networks (Nnet). There were 314 admitted children with KD who met at least four of the six diagnostic criteria for KD. We defined CALs as the presence of a maximum z score of ≥ 3.0. The SEM using age, sex, intravenous immunoglobulin resistance, number of steroid pulse therapy sessions, C-reactive protein level, and urinary β2-microglobulin (u-β2MG/Cr) values revealed a perfect fit based on the root mean square error of approximation with an R value of 1.000 and the excellent discrimination of CALs with a sample score (SS) of 2.0 for a latent variable. The Nnet analysis enabled us to predict CALs with a sensitivity, specificity and c-index of 73%, 99% and 0.86, respectively. This good and simple statistical model that uses common parameters in clinical medicine is useful in deciding the appropriate therapy to prevent CALs in Japanese KD patients.
一种使用平均结构方程模型(SEM)和神经网络(Nnet)预测川崎病(KD)冠状动脉病变(CALs)的新方法已经开发出来。共有 314 名符合 KD 至少四项诊断标准的入院儿童纳入研究。我们将 CALs 定义为最大 z 分数≥3.0。使用年龄、性别、静脉注射免疫球蛋白抵抗、皮质类固醇脉冲治疗次数、C 反应蛋白水平和尿β2-微球蛋白(u-β2MG/Cr)值的 SEM 显示,根据逼近均方根误差,R 值为 1.000,具有完美的拟合度,对 CALs 的鉴别能力良好,潜变量的样本得分(SS)为 2.0。Nnet 分析使我们能够以 73%、99%和 0.86 的灵敏度、特异性和 c 指数预测 CALs。这种使用临床医学中常见参数的良好且简单的统计模型,有助于决定日本 KD 患者预防 CALs 的适当治疗方法。