文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于神经模糊补丁 R-CNN 的多发性硬化分割。

Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation.

机构信息

Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt.

Computer Engineering and Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Dakahlia Governorate, Egypt.

出版信息

Med Biol Eng Comput. 2020 Sep;58(9):2161-2175. doi: 10.1007/s11517-020-02225-6. Epub 2020 Jul 17.


DOI:10.1007/s11517-020-02225-6
PMID:32681214
Abstract

The segmentation of the lesion plays a core role in diagnosis and monitoring of multiple sclerosis (MS). Magnetic resonance imaging (MRI) is the most frequent image modality used to evaluate such lesions. Because of the massive amount of data, manual segmentation cannot be achieved within a sensible time that restricts the usage of accurate quantitative measurement in clinical practice. Therefore, the need for effective automated segmentation techniques is critical. However, a large spatial variability between the structure of brain lesions makes it more challenging. Recently, convolutional neural network (CNN), in particular, the region-based CNN (R-CNN), have attained tremendous progress within the field of object recognition because of its ability to learn and represent features. CNN has proven a last-breaking performance in various fields, such as object recognition, and has also gained more attention in brain imaging, especially in tissue and brain segmentation. In this paper, an automated technique for MS lesion segmentation is proposed, which is built on a 3D patch-wise R-CNN. The proposed system includes two stages: first, segmenting MS lesions in T2-w and FLAIR sequences using R-CNN, then an adaptive neuro-fuzzy inference system (ANFIS) is applied to fuse the results of the two modalities. To evaluate the performance of the proposed method, the public MICCAI2008 MS challenge dataset is employed to segment MS lesions. The experimental results show competitive results of the proposed method compared with the state-of-the-art MS lesion segmentation methods with an average total score of 83.25 and an average sensitivity of 61.8% on the MICCAI2008 testing set. Graphical Abstract The proposed system overview. First, the input of two modalities FLAIR and T2 are pre-processed to remove the skull and correct the bias field. Then 3D patches for lesion and non-lesion tissues are extracted and fed to R-CNN. Each R-CNN produces a probability map of the segmentation result that provides to ANFIS to fuse the results and obtain the final MS lesion segmentation. The MS lesions are shown on a pre-processed FLAIR image.

摘要

病灶分割在多发性硬化症(MS)的诊断和监测中起着核心作用。磁共振成像(MRI)是最常用于评估此类病灶的影像模态。由于数据量巨大,手动分割无法在合理的时间内完成,这限制了准确的定量测量在临床实践中的应用。因此,需要有效的自动分割技术。然而,脑病变结构的大量空间变异性使得这一任务更加具有挑战性。最近,卷积神经网络(CNN),特别是基于区域的 CNN(R-CNN),在物体识别领域取得了巨大的进展,因为它具有学习和表示特征的能力。CNN 在物体识别等各个领域都取得了突破性的性能,在脑成像领域也越来越受到关注,特别是在组织和脑分割方面。本文提出了一种基于 3D 补丁式 R-CNN 的 MS 病灶自动分割技术。该系统包括两个阶段:首先,使用 R-CNN 对 T2-w 和 FLAIR 序列中的 MS 病灶进行分割,然后应用自适应神经模糊推理系统(ANFIS)融合两种模态的结果。为了评估所提出方法的性能,使用公共 MICCAI2008 MS 挑战赛数据集来分割 MS 病灶。实验结果表明,与最先进的 MS 病灶分割方法相比,该方法具有竞争力,在 MICCAI2008 测试集上的平均总分为 83.25,平均灵敏度为 61.8%。

图 1 所提出系统的概述。首先,对 FLAIR 和 T2 两种模态的输入进行预处理,以去除颅骨并校正偏置场。然后提取病灶和非病灶组织的 3D 补丁,并将其输入到 R-CNN 中。每个 R-CNN 都会生成一个分割结果的概率图,该概率图提供给 ANFIS 以融合结果,从而获得最终的 MS 病灶分割。MS 病灶显示在预处理的 FLAIR 图像上。

相似文献

[1]
Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation.

Med Biol Eng Comput. 2020-9

[2]
Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.

Neuroimage. 2017-7-15

[3]
Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks.

Neuroimage Clin. 2020

[4]
Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.

Magn Reson Imaging. 2019-10-25

[5]
A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.

Neuroimage Clin. 2019-12-28

[6]
Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks.

Neuroimage. 2018-10-6

[7]
Multi-branch convolutional neural network for multiple sclerosis lesion segmentation.

Neuroimage. 2019-4-3

[8]
Multiple Sclerosis Lesions Segmentation Using Attention-Based CNNs in FLAIR Images.

IEEE J Transl Eng Health Med. 2022

[9]
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks.

Neuroimage Clin. 2018-12-10

[10]
A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images.

Int J Med Inform. 2023-2

引用本文的文献

[1]
Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review.

R Soc Open Sci. 2025-1-22

[2]
Deep learning-based recognition and segmentation of intracranial aneurysms under small sample size.

Front Physiol. 2022-12-19

[3]
Optimized Deconvolutional Algorithm-based CT Perfusion Imaging in Diagnosis of Acute Cerebral Infarction.

Contrast Media Mol Imaging. 2022

[4]
Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review).

Exp Ther Med. 2021-10

[5]
Machine Learning Approaches in Study of Multiple Sclerosis Disease Through Magnetic Resonance Images.

Front Immunol. 2021

[6]
Deep Learning-Based Post-Processing of Real-Time MRI to Assess and Quantify Dynamic Wrist Movement in Health and Disease.

Diagnostics (Basel). 2021-6-11

[7]
Molecular Imaging of Inflammatory Disease.

Biomedicines. 2021-2-4

[8]
Review of Deep Learning Approaches for the Segmentation of Multiple Sclerosis Lesions on Brain MRI.

Front Neuroinform. 2020-11-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索