Suppr超能文献

多分支卷积神经网络在多发性硬化病变分割中的应用。

Multi-branch convolutional neural network for multiple sclerosis lesion segmentation.

机构信息

Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT), Genoa, Italy; Science and Technology for Electronic and Telecommunication Engineering, University of Genoa, Italy.

Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT), Genoa, Italy; Human Neuroscience Platform, Fondation Campus Biotech Geneva, Switzerland.

出版信息

Neuroimage. 2019 Aug 1;196:1-15. doi: 10.1016/j.neuroimage.2019.03.068. Epub 2019 Apr 3.

Abstract

In this paper, we present an automated approach for segmenting multiple sclerosis (MS) lesions from multi-modal brain magnetic resonance images. Our method is based on a deep end-to-end 2D convolutional neural network (CNN) for slice-based segmentation of 3D volumetric data. The proposed CNN includes a multi-branch downsampling path, which enables the network to encode information from multiple modalities separately. Multi-scale feature fusion blocks are proposed to combine feature maps from different modalities at different stages of the network. Then, multi-scale feature upsampling blocks are introduced to upsize combined feature maps to leverage information from lesion shape and location. We trained and tested the proposed model using orthogonal plane orientations of each 3D modality to exploit the contextual information in all directions. The proposed pipeline is evaluated on two different datasets: a private dataset including 37 MS patients and a publicly available dataset known as the ISBI 2015 longitudinal MS lesion segmentation challenge dataset, consisting of 14 MS patients. Considering the ISBI challenge, at the time of submission, our method was amongst the top performing solutions. On the private dataset, using the same array of performance metrics as in the ISBI challenge, the proposed approach shows high improvements in MS lesion segmentation compared with other publicly available tools.

摘要

在本文中,我们提出了一种自动方法,用于从多模态脑磁共振图像中分割多发性硬化症(MS)病变。我们的方法基于用于基于切片的 3D 容积数据分割的深度端到端 2D 卷积神经网络(CNN)。所提出的 CNN 包括一个多分支下采样路径,该路径使网络能够分别对来自多个模态的信息进行编码。提出了多尺度特征融合块,以在网络的不同阶段将来自不同模态的特征图组合在一起。然后,引入多尺度特征上采样块来增大组合特征图的大小,以利用病变形状和位置的信息。我们使用每个 3D 模态的正交平面方向来训练和测试所提出的模型,以利用各个方向的上下文信息。所提出的流水线在两个不同的数据集上进行了评估:一个包括 37 名 MS 患者的私人数据集和一个名为 ISBI 2015 纵向 MS 病变分割挑战赛数据集的公开可用数据集,该数据集包含 14 名 MS 患者。考虑到 ISBI 挑战赛,在提交时,我们的方法是表现最好的解决方案之一。在私人数据集中,使用与 ISBI 挑战赛相同的性能指标数组,与其他公开可用的工具相比,所提出的方法在 MS 病变分割方面有了很大的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验