文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于卷积神经网络的多发性硬化病变分割中单样本域自适应

One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks.

机构信息

Research institute of Computer Vision and Robotics, University of Girona, Spain.

Research institute of Computer Vision and Robotics, University of Girona, Spain; Computer Science Department, Faculty of Computers and Information, Assiut University, Egypt.

出版信息

Neuroimage Clin. 2019;21:101638. doi: 10.1016/j.nicl.2018.101638. Epub 2018 Dec 10.


DOI:10.1016/j.nicl.2018.101638
PMID:30555005
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6413299/
Abstract

In recent years, several convolutional neural network (CNN) methods have been proposed for the automated white matter lesion segmentation of multiple sclerosis (MS) patient images, due to their superior performance compared with those of other state-of-the-art methods. However, the accuracies of CNN methods tend to decrease significantly when evaluated on different image domains compared with those used for training, which demonstrates the lack of adaptability of CNNs to unseen imaging data. In this study, we analyzed the effect of intensity domain adaptation on our recently proposed CNN-based MS lesion segmentation method. Given a source model trained on two public MS datasets, we investigated the transferability of the CNN model when applied to other MRI scanners and protocols, evaluating the minimum number of annotated images needed from the new domain and the minimum number of layers needed to re-train to obtain comparable accuracy. Our analysis comprised MS patient data from both a clinical center and the public ISBI2015 challenge database, which permitted us to compare the domain adaptation capability of our model to that of other state-of-the-art methods. In both datasets, our results showed the effectiveness of the proposed model in adapting previously acquired knowledge to new image domains, even when a reduced number of training samples was available in the target dataset. For the ISBI2015 challenge, our one-shot domain adaptation model trained using only a single case showed a performance similar to that of other CNN methods that were fully trained using the entire available training set, yielding a comparable human expert rater performance. We believe that our experiments will encourage the MS community to incorporate its use in different clinical settings with reduced amounts of annotated data. This approach could be meaningful not only in terms of the accuracy in delineating MS lesions but also in the related reductions in time and economic costs derived from manual lesion labeling.

摘要

近年来,由于卷积神经网络 (CNN) 方法在表现上优于其他最先进的方法,因此已经提出了几种用于对多发性硬化症 (MS) 患者图像进行自动白质病变分割的 CNN 方法。然而,与用于训练的图像相比,当在不同的图像域中评估 CNN 方法时,其准确性往往会显著下降,这表明 CNN 缺乏对未见影像数据的适应性。在这项研究中,我们分析了强度域自适应对我们最近提出的基于 CNN 的 MS 病变分割方法的影响。对于在两个公共 MS 数据集上训练的源模型,我们研究了 CNN 模型在应用于其他 MRI 扫描仪和协议时的可转移性,评估了从新域中需要的最少注释图像数量以及重新训练以获得可比准确性所需的最少层数。我们的分析包括来自临床中心和公共 ISBI2015 挑战赛数据库的 MS 患者数据,这使我们能够将我们的模型的域自适应能力与其他最先进的方法进行比较。在两个数据集上,我们的结果表明,即使在目标数据集可用的训练样本数量较少的情况下,我们提出的模型也能够有效地将先前获取的知识应用于新的图像域。对于 ISBI2015 挑战赛,我们仅使用单个病例训练的一次性域自适应模型的性能与其他使用整个可用训练集进行完全训练的 CNN 方法相似,从而获得与人类专家评分者相似的性能。我们相信,我们的实验将鼓励 MS 社区在不同的临床环境中使用它,并且需要的注释数据量减少。这种方法不仅在描绘 MS 病变的准确性方面有意义,而且在手动病变标记所带来的时间和经济成本的相关减少方面也有意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46eb/6413299/2f1e43ecf075/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46eb/6413299/8b056905f380/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46eb/6413299/c44b3b7ab399/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46eb/6413299/8288b02d424a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46eb/6413299/2f1e43ecf075/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46eb/6413299/8b056905f380/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46eb/6413299/c44b3b7ab399/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46eb/6413299/8288b02d424a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46eb/6413299/2f1e43ecf075/gr4.jpg

相似文献

[1]
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks.

Neuroimage Clin. 2018-12-10

[2]
Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks.

Neuroimage Clin. 2020

[3]
Infratentorial lesions in multiple sclerosis patients: intra- and inter-rater variability in comparison to a fully automated segmentation using 3D convolutional neural networks.

Eur Radiol. 2022-4

[4]
Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.

Neuroimage. 2017-7-15

[5]
Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks.

Neuroimage. 2018-10-6

[6]
Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability.

Eur Radiol. 2023-3

[7]
Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation.

Med Biol Eng Comput. 2020-9

[8]
Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation.

Neuroimage Clin. 2019-11-5

[9]
Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks.

Sci Rep. 2021-1-13

[10]
A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images.

Int J Med Inform. 2023-2

引用本文的文献

[1]
The temporal dynamics and clinical relevance of choroid plexus measures in multiple sclerosis.

Brain Commun. 2025-6-14

[2]
Enhancing precision in multiple sclerosis lesion segmentation: A U-net based machine learning approach with data augmentation.

Neuroimage Rep. 2025-2-1

[3]
Mitigating catastrophic forgetting in Multiple sclerosis lesion segmentation using elastic weight consolidation.

Neuroimage Clin. 2025

[4]
The role of trustworthy and reliable AI for multiple sclerosis.

Front Digit Health. 2025-3-24

[5]
Subject-Based Transfer Learning in Longitudinal Multiple Sclerosis Lesion Segmentation.

J Neuroimaging. 2025

[6]
Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review.

R Soc Open Sci. 2025-1-22

[7]
Scanner-specific optimisation of automated lesion segmentation in MS.

Neuroimage Clin. 2024

[8]
Investigating the relationship between thalamic iron concentration and disease severity in secondary progressive multiple sclerosis using quantitative susceptibility mapping: Cross-sectional analysis from the MS-STAT2 randomised controlled trial.

Neuroimage Rep. 2024-9

[9]
Consensus of algorithms for lesion segmentation in brain MRI studies of multiple sclerosis.

Sci Rep. 2024-9-12

[10]
Digital outcome measures are associated with brain atrophy in patients with multiple sclerosis.

J Neurol. 2024-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索