Aubry Taylor J, Winchell K J, Salamat Charlene Z, Basile Victoria M, Lindemuth Jeffrey R, Stauber Julia M, Axtell Jonathan C, Kubena Rebecca M, Phan Minh D, Bird Matthew J, Spokoyny Alexander M, Tolbert Sarah H, Schwartz Benjamin J
Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095-1569 USA.
Lake Shore Cryotronics Westerville OH 43082 USA.
Adv Funct Mater. 2020 Jul 9;30(28):2001800. doi: 10.1002/adfm.202001800. Epub 2020 May 25.
Carrier mobility in doped conjugated polymers is limited by Coulomb interactions with dopant counterions. This complicates studying the effect of the dopant's oxidation potential on carrier generation because different dopants have different Coulomb interactions with polarons on the polymer backbone. Here, dodecaborane (DDB)-based dopants are used, which electrostatically shield counterions from carriers and have tunable redox potentials at constant size and shape. DDB dopants produce mobile carriers due to spatial separation of the counterion, and those with greater energetic offsets produce more carriers. Neutron reflectometry indicates that dopant infiltration into conjugated polymer films is redox-potential-driven. Remarkably, X-ray scattering shows that despite their large 2-nm size, DDBs intercalate into the crystalline polymer lamellae like small molecules, indicating that this is the preferred location for dopants of any size. These findings elucidate why doping conjugated polymers usually produces integer, rather than partial charge transfer: dopant counterions effectively intercalate into the lamellae, far from the polarons on the polymer backbone. Finally, it is shown that the IR spectrum provides a simple way to determine polaron mobility. Overall, higher oxidation potentials lead to higher doping efficiencies, with values reaching 100% for driving forces sufficient to dope poorly crystalline regions of the film.
掺杂共轭聚合物中的载流子迁移率受到与掺杂剂抗衡离子的库仑相互作用的限制。这使得研究掺杂剂的氧化电位对载流子产生的影响变得复杂,因为不同的掺杂剂与聚合物主链上的极化子具有不同的库仑相互作用。在此,使用了基于十二硼烷(DDB)的掺杂剂,其能使抗衡离子与载流子发生静电屏蔽,并且在尺寸和形状恒定的情况下具有可调节的氧化还原电位。由于抗衡离子的空间分离,DDB掺杂剂产生了可移动的载流子,而那些具有更大能量偏移的掺杂剂会产生更多的载流子。中子反射测量表明,掺杂剂渗透到共轭聚合物薄膜中是由氧化还原电位驱动的。值得注意的是,X射线散射表明,尽管DDB的尺寸较大,达2纳米,但它们像小分子一样插入到结晶聚合物薄片中,这表明这是任何尺寸的掺杂剂的首选位置。这些发现阐明了为什么掺杂共轭聚合物通常会产生整数电荷转移,而不是部分电荷转移:掺杂剂抗衡离子有效地插入到薄片中,远离聚合物主链上的极化子。最后,研究表明红外光谱提供了一种确定极化子迁移率的简单方法。总体而言,更高的氧化电位会导致更高的掺杂效率,对于足以掺杂薄膜中结晶性较差区域的驱动力,掺杂效率值可达100%。