Kiefer David, Kroon Renee, Hofmann Anna I, Sun Hengda, Liu Xianjie, Giovannitti Alexander, Stegerer Dominik, Cano Alexander, Hynynen Jonna, Yu Liyang, Zhang Yadong, Nai Dingqi, Harrelson Thomas F, Sommer Michael, Moulé Adam J, Kemerink Martijn, Marder Seth R, McCulloch Iain, Fahlman Mats, Fabiano Simone, Müller Christian
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden.
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
Nat Mater. 2019 Feb;18(2):149-155. doi: 10.1038/s41563-018-0263-6. Epub 2019 Jan 14.
Molecular doping is a crucial tool for controlling the charge-carrier concentration in organic semiconductors. Each dopant molecule is commonly thought to give rise to only one polaron, leading to a maximum of one donor:acceptor charge-transfer complex and hence an ionization efficiency of 100%. However, this theoretical limit is rarely achieved because of incomplete charge transfer and the presence of unreacted dopant. Here, we establish that common p-dopants can in fact accept two electrons per molecule from conjugated polymers with a low ionization energy. Each dopant molecule participates in two charge-transfer events, leading to the formation of dopant dianions and an ionization efficiency of up to 200%. Furthermore, we show that the resulting integer charge-transfer complex can dissociate with an efficiency of up to 170%. The concept of double doping introduced here may allow the dopant fraction required to optimize charge conduction to be halved.
分子掺杂是控制有机半导体中电荷载流子浓度的关键工具。通常认为每个掺杂剂分子仅产生一个极化子,最多形成一个供体:受体电荷转移复合物,因此电离效率为100%。然而,由于电荷转移不完全和未反应掺杂剂的存在,这一理论极限很少能实现。在此,我们证实常见的p型掺杂剂实际上可以从具有低电离能的共轭聚合物中每个分子接受两个电子。每个掺杂剂分子参与两个电荷转移事件,导致形成掺杂剂二价阴离子,电离效率高达200%。此外,我们表明所形成的整数电荷转移复合物可以以高达170%的效率解离。这里引入的双掺杂概念可能会使优化电荷传导所需的掺杂剂比例减半。