Suppr超能文献

辐照X-750中氦气泡的自动检测

Automated Detection of Helium Bubbles in Irradiated X-750.

作者信息

Anderson Chris M, Klein Jacob, Rajakumar Heygaan, Judge Colin D, Béland Laurent Karim

机构信息

Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada.

Canadian Nuclear Laboratories, Chalk River, Ontario,Canada.

出版信息

Ultramicroscopy. 2020 Oct;217:113068. doi: 10.1016/j.ultramic.2020.113068. Epub 2020 Jul 3.

Abstract

Imaging nanoscale features using transmission electron microscopy is key to predicting and assessing the mechanical behavior of structural materials in nuclear reactors. Analyzing these micrographs is often a tedious and labour intensive manual process. It is a prime candidate for automation. Here, a region-based convolutional neural network is adapted to detect helium bubbles in micrographs of neutron-irradiated Inconel X-750 reactor spacer springs. We demonstrate that this neural network produces analyses of similar accuracy and reproducibility to that produced by humans. Further, we show this method as being four orders of magnitude faster than manual analysis allowing for generation of significant quantities of data. The proposed method can be used with micrographs of different Fresnel contrasts and magnification levels.

摘要

使用透射电子显微镜对纳米级特征进行成像,是预测和评估核反应堆结构材料力学行为的关键。分析这些显微照片通常是一个繁琐且劳动强度大的手动过程。它是自动化的主要候选对象。在此,一种基于区域的卷积神经网络被用于检测中子辐照的因科镍合金X - 750反应堆间隔弹簧显微照片中的氦气泡。我们证明,该神经网络产生的分析结果在准确性和可重复性方面与人工分析相当。此外,我们表明这种方法比人工分析快四个数量级,能够生成大量数据。所提出的方法可用于具有不同菲涅耳对比度和放大倍数水平的显微照片。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验