Bilyk Thomas, Goryaeva Alexandra M, Marinica Mihai-Cosmin, Flament Camille, Sabathier Catherine, Leroy Eric, Loyer-Prost Marie, Meslin Estelle
Université Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement des Matériaux, SRMP, 91191, Gif-sur-Yvette, France.
Université Grenoble Alpes, CEA, LITEN, 38000, Grenoble, France.
Sci Rep. 2024 Oct 24;14(1):25168. doi: 10.1038/s41598-024-74894-4.
In-depth statistics of individual defects observed during transmission electron microscopy (TEM) experiments are essential for the thorough characterization of materials. In this study, we aim to quantitatively characterize the population of dislocation loops in ion-irradiated CrFeMnNi alloys. To this end, we propose an efficient guideline to prepare TEM micrographs dataset for deep learning analysis, adapted for accurate characterization of microstructures produced by thousands of overlapping defects, a very common situation in TEM images, unfeasible by previous existing methods. To reduce human effort, we annotate only a few images and complement the database through a two-step process: initially, singular value decomposition to normalize image background, followed by a controlled data augmentation. The performed analysis provides precise quantitative information about the number of loops of different types, as well as their spatial distribution, their size, and the inter-object distances. These characteristics provide insights into the nucleation, mobility, and growth of dislocation loops, as well as the elastic anisotropy of the material. Our results emphasize how accurate analysis of complex microstructures can provide insights into the physical properties of materials and open up many perspectives for attaining quantitative information on materials properties based solely on their image analysis.
在透射电子显微镜(TEM)实验中对观察到的单个缺陷进行深入统计,对于全面表征材料至关重要。在本研究中,我们旨在定量表征离子辐照CrFeMnNi合金中位错环的数量。为此,我们提出了一种有效的指导方针,用于为深度学习分析准备TEM显微照片数据集,适用于准确表征由数千个重叠缺陷产生的微观结构,这在TEM图像中是非常常见的情况,而以前的现有方法无法实现。为了减少人工工作量,我们只标注了少数图像,并通过两步过程补充数据库:首先,进行奇异值分解以归一化图像背景,然后进行可控的数据增强。所进行的分析提供了有关不同类型环的数量、它们的空间分布、大小以及物体间距离的精确量化信息。这些特征有助于深入了解位错环的形核、迁移率和生长,以及材料的弹性各向异性。我们的结果强调了对复杂微观结构的精确分析如何能够深入了解材料的物理性质,并为仅基于图像分析获取材料性质的定量信息开辟许多前景。