Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
Phys Rev E. 2020 Jun;101(6-1):062416. doi: 10.1103/PhysRevE.101.062416.
Molecular motors are fascinating proteins that use the energy of ATP hydrolysis to drive vesicles and organelles along cytoskeleton filaments toward their final destination within the cell. Several copies of these proteins bind to the cargo and take turns transporting the cargo attaching to and detaching from the track stochastically. Despite the relevance of molecular motors to cell physiology, key aspects of their collective functioning are still unknown. In this work we propose a one-dimensional model for the transport of extensive and smooth organelles driven by molecular motors. We ran numerical simulations to study the behavior of the cargo for different motor configurations, focusing on the transport properties observable in the experiments, e.g., average speed of the organelle and variations in length. We found that active motors drive the cargo using two different mechanisms: Either they locate in front of the cargo and pull the organelle or they situate at the cargo lagging edge and push. Variations in the organelle length is in close relation with the fraction of motors in each configuration, which depends on the resisting load. The results of this model were contrasted with experimental data obtained from the tracking of rodlike mitochondria during active transport in Xenopus laevis melanophores.
分子马达是一种令人着迷的蛋白质,它利用 ATP 水解的能量沿着细胞骨架纤维将囊泡和细胞器驱动到细胞内的最终目的地。这些蛋白质的几个副本与货物结合,并轮流将货物附着和脱离轨道,这是一种随机的过程。尽管分子马达与细胞生理学密切相关,但它们的集体功能的关键方面仍然未知。在这项工作中,我们提出了一个一维模型,用于由分子马达驱动的广泛和光滑细胞器的运输。我们进行了数值模拟,以研究不同马达配置下货物的行为,重点研究实验中可观察到的运输特性,例如细胞器的平均速度和长度变化。我们发现,活性马达使用两种不同的机制来驱动货物:它们要么位于货物前面并拉动细胞器,要么位于货物滞后边缘并推动。细胞器长度的变化与每种配置中马达的分数密切相关,而马达的分数又取决于阻力负载。该模型的结果与从非洲爪蟾黑素细胞中活性运输期间跟踪棒状线粒体获得的实验数据进行了对比。