Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina.
PLoS One. 2011 Apr 1;6(4):e18332. doi: 10.1371/journal.pone.0018332.
The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ∼ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules.
细胞质的组织由分子马达调控,这些分子马达沿着细胞骨架轨道运输细胞器和其他货物。黑素细胞中的色素细胞器或黑素小体通过细胞质动力蛋白和驱动蛋白-2 的作用,分别沿着微管向其负端和正端移动。在这项工作中,我们使用单颗粒追踪技术来描述在微管上运输过程中马达驱动细胞器的力学特性。我们以高时间和空间分辨率追踪细胞器,并对它们在垂直于细胞骨架轨道方向上的动力学进行了表征。对这些数据的定量分析表明,这种动力学是由于黑素小体与微管之间在粘弹性微环境中的弹簧样相互作用所致。基于广义朗之万方程的模型解释了这些观察结果,并预测了作为细胞器和微管之间连接体的马达复合物的测量刚度比在体外确定的马达蛋白的刚度小一个数量级左右。这一结果表明,在马达与细胞器相互作用中涉及的其他生物分子有助于该马达复合物的力学特性。我们假设,对于观察到的马达连接体的高灵活性可能是提高由多个分子马达驱动的运输效率所必需的。