Hohnjec Natalija, Henckel Kolja, Bekel Thomas, Gouzy Jerome, Dondrup Michael, Goesmann Alexander, Küster Helge
Institute for Genome Research, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany.
Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany.
Funct Plant Biol. 2006 Aug;33(8):737-748. doi: 10.1071/FP06079.
The arbuscular mycorrhizal (AM) association between terrestrial plants and soil fungi of the phylum Glomeromycota is the most widespread beneficial plant-microbe interaction on earth. In the course of the symbiosis, fungal hyphae colonise plant roots and supply limiting nutrients, in particular phosphorus, in exchange for carbon compounds. Owing to the obligate biotrophy of mycorrhizal fungi and the lack of genetic systems to study them, targeted molecular studies on AM symbioses proved to be difficult. With the emergence of plant genomics and the selection of suitable models, an application of untargeted expression profiling experiments became possible. In the model legume Medicago truncatula, high-throughput expressed sequence tag (EST)-sequencing in conjunction with in silico and experimental transcriptome profiling provided transcriptional snapshots that together defined the global genetic program activated during AM. Owing to an asynchronous development of the symbiosis, several hundred genes found to be activated during the symbiosis cannot be easily correlated with symbiotic structures, but the expression of selected genes has been extended to the cellular level to correlate gene expression with specific stages of AM development. These approaches identified marker genes for the AM symbiosis and provided the first insights into the molecular basis of gene expression regulation during AM.
陆地植物与球囊菌门土壤真菌之间的丛枝菌根(AM)共生关系是地球上分布最广泛的有益植物 - 微生物相互作用。在共生过程中,真菌菌丝定殖于植物根系并提供有限的养分,特别是磷,以换取碳化合物。由于菌根真菌的专性活体营养特性以及缺乏用于研究它们的遗传系统,对AM共生进行有针对性的分子研究被证明是困难的。随着植物基因组学的出现以及合适模型的选择,进行非靶向表达谱实验成为可能。在豆科模式植物蒺藜苜蓿中,高通量表达序列标签(EST)测序结合计算机模拟和实验转录组分析提供了转录快照,共同定义了AM过程中激活的全局遗传程序。由于共生发育的不同步性,在共生过程中发现的数百个被激活的基因难以轻易与共生结构相关联,但已将选定基因的表达扩展到细胞水平,以将基因表达与AM发育的特定阶段相关联。这些方法确定了AM共生的标记基因,并首次深入了解了AM过程中基因表达调控的分子基础。