Suppr超能文献

使用决策树分析脑电图信号:幅度调制研究

Analyzing EEG Signals Using Decision Trees: A Study of Modulation of Amplitude.

作者信息

Bastos Narusci S, Marques Bianca P, Adamatti Diana F, Billa Cleo Z

机构信息

Federal University of Rio Grande, Computer Science Center, Rio Grande, RS 96203-900, Brazil.

出版信息

Comput Intell Neurosci. 2020 Jul 9;2020:3598416. doi: 10.1155/2020/3598416. eCollection 2020.

Abstract

An electroencephalogram (EEG) is a test that records electrical activity of the brain using electrodes attached to the scalp, and it has recently been used in conjunction with BMI (Brain-Machine Interface). Currently, the analysis of the EEG is visual, using graphic tools such as topographic maps. However, this analysis can be very difficult, so in this work, we apply a methodology of EEG analysis through data mining to analyze two different band frequencies of the brain signals (full band and Beta band) during an experiment where visually impaired and sighted individuals recognize spatial objects through the sense of touch. In this paper, we present details of the proposed methodology and a case study using decision trees to analyze EEG signals from visually impaired and sighted individuals during the execution of a spatial ability activity. In our experiment, the hypothesis was that sighted individuals, even if they are blindfolded, use vision to identify objects and that visually impaired people use the sense of touch to identify the same objects.

摘要

脑电图(EEG)是一种通过连接到头皮的电极来记录大脑电活动的测试,最近它已与脑机接口(BMI)结合使用。目前,脑电图的分析是可视化的,使用诸如地形图等图形工具。然而,这种分析可能非常困难,因此在这项工作中,我们应用一种通过数据挖掘进行脑电图分析的方法,以分析在视障者和视力正常者通过触觉识别空间物体的实验过程中大脑信号的两种不同频段(全频段和β频段)。在本文中,我们详细介绍了所提出的方法以及一个案例研究,该案例使用决策树来分析在执行空间能力活动期间视障者和视力正常者的脑电图信号。在我们的实验中,假设是视力正常者即使被蒙上眼睛也会利用视觉来识别物体,而视障者则利用触觉来识别相同的物体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff62/7368232/85750f86c5c3/CIN2020-3598416.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验