Huang Yi, Fang Yongjin, Lu Xue Feng, Luan Deyan, Lou Xiong Wen David
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
Angew Chem Int Ed Engl. 2020 Nov 2;59(45):19914-19918. doi: 10.1002/anie.202008987. Epub 2020 Aug 31.
Confining nanostructured electrode materials in porous carbon represents an effective strategy for improving the electrochemical performance of lithium-ion batteries. Herein, we report the design and synthesis of hybrid hollow nanostructures composed of highly dispersed Co O hollow nanoparticles (sub-20 nm) embedded in the mesoporous walls of carbon nanoboxes (denoted as H-Co O @MCNBs) as an anode material for lithium-ion batteries. The facile metal-organic framework (MOF)-engaged strategy for the synthesis of H-Co O @MCNBs involves chemical etching-coordination and subsequent two-step annealing treatments. Owing to the unique structural merits including more active interfacial sites, effectively alleviated volume variation, good and stable electrical contact, and easy access of Li ions, the H-Co O @MCNBs exhibit excellent lithium-storage performance in terms of high specific capacity, excellent rate capability, and cycling stability.
将纳米结构电极材料限制在多孔碳中是提高锂离子电池电化学性能的有效策略。在此,我们报道了一种由高度分散的CoO空心纳米颗粒(小于20 nm)嵌入碳纳米盒的中孔壁中组成的混合空心纳米结构(表示为H-CoO@MCNBs)的设计与合成,作为锂离子电池的负极材料。合成H-CoO@MCNBs的简便金属有机框架(MOF)参与策略涉及化学蚀刻-配位和随后的两步退火处理。由于具有独特的结构优点,包括更多的活性界面位点、有效缓解的体积变化、良好且稳定的电接触以及锂离子的易于进入,H-CoO@MCNBs在高比容量、优异的倍率性能和循环稳定性方面表现出优异的锂存储性能。