用于高容量和增强电荷转移动力学的无粘合剂储能电极的碳纳米团簇介导的纳米共混组装

Carbon Nanocluster-Mediated Nanoblending Assembly for Binder-Free Energy Storage Electrodes with High Capacities and Enhanced Charge Transfer Kinetics.

作者信息

Song Yongkwon, Bae Woojin, Ahn Jeongyeon, Son Youhyun, Kwon Minseong, Kwon Cheong Hoon, Kim Younghoon, Ko Yongmin, Cho Jinhan

机构信息

Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

Department of Energy Resources and Chemical Engineering, Kangwon National University, 346 Jungang-ro, Samcheok, 25913, Republic of Korea.

出版信息

Adv Sci (Weinh). 2023 Aug;10(22):e2301248. doi: 10.1002/advs.202301248. Epub 2023 May 21.

Abstract

The effective spatial distribution and arrangement of electrochemically active and conductive components within metal oxide nanoparticle (MO NP)-based electrodes significantly impact their energy storage performance. Unfortunately, conventional electrode preparation processes have much difficulty addressing this issue. Herein, this work demonstrates that a unique nanoblending assembly based on favorable and direct interfacial interactions between high-energy MO NPs and interface-modified carbon nanoclusters (CNs) notably enhances the capacities and charge transfer kinetics of binder-free electrodes in lithium-ion batteries (LIBs). For this study, carboxylic acid (COOH)-functionalized carbon nanoclusters (CCNs) are consecutively assembled with bulky ligand-stabilized MO NPs through ligand-exchange-induced multidentate binding between the COOH groups of CCNs and the surface of NPs. This nanoblending assembly homogeneously distributes conductive CCNs within densely packed MO NP arrays without insulating organics (i.e., polymeric binders and/or ligands) and prevents the aggregation/segregation of electrode components, thus markedly reducing contact resistance between neighboring NPs. Furthermore, when these CCN-mediated MO NP electrodes are formed on highly porous fibril-type current collectors (FCCs) for LIB electrodes, they deliver outstanding areal performance, which can be further improved through simple multistacking. The findings provide a basis for better understanding the relationship between interfacial interaction/structures and charge transfer processes and for developing high-performance energy storage electrodes.

摘要

金属氧化物纳米颗粒(MO NP)基电极中电化学活性和导电成分的有效空间分布与排列对其储能性能有显著影响。不幸的是,传统的电极制备工艺在解决这个问题上存在很大困难。在此,这项工作表明,基于高能MO NPs与界面改性碳纳米团簇(CNs)之间良好且直接的界面相互作用的独特纳米共混组装,显著提高了锂离子电池(LIBs)中无粘结剂电极的容量和电荷转移动力学。在本研究中,通过配体交换诱导的CCNs的COOH基团与NPs表面之间的多齿结合,将羧酸(COOH)功能化的碳纳米团簇(CCNs)与大量配体稳定的MO NPs连续组装。这种纳米共混组装使导电CCNs均匀分布在密集堆积的MO NP阵列中,而没有绝缘有机物(即聚合物粘结剂和/或配体),并防止电极成分的聚集/偏析,从而显著降低相邻NPs之间的接触电阻。此外,当这些CCN介导的MO NP电极形成在用于LIB电极的高孔隙率纤维型集流体(FCCs)上时,它们表现出出色的面积性能,通过简单的多层堆叠可以进一步提高。这些发现为更好地理解界面相互作用/结构与电荷转移过程之间的关系以及开发高性能储能电极提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aab1/10401157/d353044928cb/ADVS-10-2301248-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索