文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

PoLoBag:基于表达数据的有符号基因调控网络推断的多项式套索装袋

PoLoBag: Polynomial Lasso Bagging for signed gene regulatory network inference from expression data.

机构信息

School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK.

School of Computing and Information Systems, University of Melbourne, Melbourne, VIC 3052, Australia.

出版信息

Bioinformatics. 2021 Jan 29;36(21):5187-5193. doi: 10.1093/bioinformatics/btaa651.


DOI:10.1093/bioinformatics/btaa651
PMID:32697830
Abstract

MOTIVATION: Inferring gene regulatory networks (GRNs) from expression data is a significant systems biology problem. A useful inference algorithm should not only unveil the global structure of the regulatory mechanisms but also the details of regulatory interactions such as edge direction (from regulator to target) and sign (activation/inhibition). Many popular GRN inference algorithms cannot infer edge signs, and those that can infer signed GRNs cannot simultaneously infer edge directions or network cycles. RESULTS: To address these limitations of existing algorithms, we propose Polynomial Lasso Bagging (PoLoBag) for signed GRN inference with both edge directions and network cycles. PoLoBag is an ensemble regression algorithm in a bagging framework where Lasso weights estimated on bootstrap samples are averaged. These bootstrap samples incorporate polynomial features to capture higher-order interactions. Results demonstrate that PoLoBag is consistently more accurate for signed inference than state-of-the-art algorithms on simulated and real-world expression datasets. AVAILABILITY AND IMPLEMENTATION: Algorithm and data are freely available at https://github.com/gourabghoshroy/PoLoBag. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:从表达数据推断基因调控网络(GRN)是一个重要的系统生物学问题。一个有用的推断算法不仅应该揭示调控机制的全局结构,还应该揭示调控相互作用的细节,如边缘方向(从调节剂到靶标)和符号(激活/抑制)。许多流行的 GRN 推断算法无法推断边缘符号,而那些能够推断有符号 GRN 的算法则无法同时推断边缘方向或网络循环。

结果:为了解决现有算法的这些局限性,我们提出了 Polynomial Lasso Bagging(PoLoBag)用于有符号 GRN 推断,同时推断边缘方向和网络循环。PoLoBag 是一种集成回归算法,在袋装框架中,对 bootstrap 样本估计的 Lasso 权重进行平均。这些 bootstrap 样本包含多项式特征,以捕获更高阶的相互作用。结果表明,PoLoBag 在模拟和真实表达数据集上的有符号推断比最先进的算法更准确。

可用性和实现:算法和数据可在 https://github.com/gourabghoshroy/PoLoBag 上免费获得。

补充信息:补充数据可在 Bioinformatics 在线获得。

相似文献

[1]
PoLoBag: Polynomial Lasso Bagging for signed gene regulatory network inference from expression data.

Bioinformatics. 2021-1-29

[2]
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.

BMC Syst Biol. 2018-12-14

[3]
ATEN: And/Or tree ensemble for inferring accurate Boolean network topology and dynamics.

Bioinformatics. 2020-1-15

[4]
scSGL: kernelized signed graph learning for single-cell gene regulatory network inference.

Bioinformatics. 2022-5-26

[5]
Inference of Gene Regulatory Network Based on Local Bayesian Networks.

PLoS Comput Biol. 2016-8-1

[6]
GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks.

Bioinformatics. 2019-6-1

[7]
Inference of gene regulatory networks based on nonlinear ordinary differential equations.

Bioinformatics. 2020-12-8

[8]
A neuro-evolution approach to infer a Boolean network from time-series gene expressions.

Bioinformatics. 2020-12-30

[9]
TRaCE+: Ensemble inference of gene regulatory networks from transcriptional expression profiles of gene knock-out experiments.

BMC Bioinformatics. 2016-6-24

[10]
Inference of gene regulatory networks using pseudo-time series data.

Bioinformatics. 2021-8-25

引用本文的文献

[1]
NetREm: Network Regression Embeddings reveal cell-type transcription factor coordination for gene regulation.

Bioinform Adv. 2024-12-20

[2]
CSER: a gene regulatory network construction method based on causal strength and ensemble regression.

Front Genet. 2024-9-20

[3]
Evaluating Ovarian Cancer Chemotherapy Response Using Gene Expression Data and Machine Learning.

BioMedInformatics. 2024-6

[4]
High-accuracy prediction of colorectal cancer chemotherapy efficacy using machine learning applied to gene expression data.

Front Physiol. 2024-1-18

[5]
Regulus infers signed regulatory relations from few samples' information using discretization and likelihood constraints.

PLoS Comput Biol. 2024-1

[6]
Multi-omics regulatory network inference in the presence of missing data.

Brief Bioinform. 2023-9-20

[7]
A gene regulatory network inference model based on pseudo-siamese network.

BMC Bioinformatics. 2023-4-21

[8]
Reconstructing gene regulatory networks of biological function using differential equations of multilayer perceptrons.

BMC Bioinformatics. 2022-11-24

[9]
Inferring causal gene regulatory network GreyNet: From dynamic grey association to causation.

Front Bioeng Biotechnol. 2022-9-27

[10]
Machine learning in postgenomic biology and personalized medicine.

Wiley Interdiscip Rev Data Min Knowl Discov. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索